ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the transport, decoherence and dissipation of an impurity interacting with a bath of free fermions in a one-dimensional lattice. Numerical simulations are made with the time-evolving block decimation method. We introduce a mass imbalance bet ween the impurity and bath particles and find that the fastest decoherence occurs for a light impurity in a bath of heavy particles. By contrast, the fastest dissipation of energy occurs when the masses are equal. We present a simple model for decoherence in the heavy bath limit, and a linear density response description of the interaction which predicts maximum dissipation for equal masses.
We study analytically and with the numerical time-evolving block decimation method the dynamics of an impurity in a bath of spinless fermions with nearest-neighbor interactions in a one-dimensional lattice. The bath is in a Mott insulator state with alternating sites occupied and the impurity interacts with the bath by repulsive on-site interactions. We find that when the magnitudes of the on-site and nearest-neighbor interactions are close to each other, the system shows excitations of two qualitatively distinct types. For the first type, a domain wall and an anti-domain wall of density propagate in opposite directions, while the impurity stays at the initial position. For the second one, the impurity is bound to the anti-domain wall while the domain wall propagates, an excitation where the impurity and bath are closely coupled.
We simulate a balanced attractively interacting two-component Fermi gas in a one-dimensional lattice perturbed with a moving potential well or barrier. Using the time-evolving block decimation method, we study different velocities of the perturbation and distinguish two velocity regimes based on clear differences in the time evolution of particle densities and the pair correlation function. We show that, in the slow regime, the densities deform as particles are either attracted by the potential well or repelled by the barrier, and a wave front of hole or particle excitations propagates at the maximum group velocity. Simultaneously, the initial pair correlations are broken and coherence over different sites is lost. In contrast, in the fast regime, the densities are not considerably deformed and the pair correlations are preserved.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا