ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconductors with persistent zero-resistance currents serve as permanent magnets for high-field applications requiring a strong and stable magnetic field, such as magnetic resonance imaging (MRI). The recent global helium shortage has quickened re search into high-temperature superconductors (HTSs) materials that can be used without conventional liquid-helium cooling to 4.2 K. Herein, we demonstrate that 40-K-class metallic HTS magnesium diboride (MgB2) makes an excellent permanent bulk magnet, maintaining 3 T at 20 K for 1 week with an extremely high stability (<0.1 ppm/h). The magnetic field trapped in this magnet is uniformly distributed, as for single-crystalline neodymium-iron-boron. Magnetic hysteresis loop of the MgB2 permanent bulk magnet was detrmined. Because MgB2 is a simple-binary-line compound that does not contain rare-earth metals, polycrystalline bulk material can be industrially fabricated at low cost and with high yield to serve as strong magnets that are compatible with conventional compact cryocoolers, making MgB2 bulks promising for the next generation of Tesla-class permanent-magnet applications.
We have developed disk-shaped MgB2 bulk superconducting magnets (20, 30 mm in diameter, 10 mm in thickness) using the in-situ process from Mg and B powders and evaluated the temperature dependence of trapped magnetic field. A pair of two disc-shaped bulks of 30 mm in diameter and 10 mm in thickness magnetized by field-cooling condition showed trapped fields of 1.2, 2.8 and 3.1 T at 30, 20 and 17.5 K, respectively. High trapped field over 3 T was recorded for the first time.
The two most common types of MgB2 conductor fabrication technique - in-situ and ex-situ - show increasing conflicts concerning the connectivity, an effective current-carrying cross-sectional area. An in-situ reaction yields a strong intergrain coupli ng with a low packing factor, while an ex-situ process using pre-reacted MgB2 yields tightly packed grains, however, their coupling is much weaker. We studied the normal-state resistivity and microstructure of ex-situ MgB2 bulks synthesized with varied heating conditions under ambient pressure. The samples heated at moderately high temperatures of ~900{deg}C for a long period showed an increased packing factor, a larger intergrain contact area and a significantly decreased resistivity, all of which indicate the solid-state self-sintering of MgB2. Consequently the connectivity of the sintered ex-situ samples exceeded the typical connectivity range 5-15% of the in-situ samples. Our results show self-sintering develops the superior connectivity potential of ex-situ MgB2, though its intergrain coupling is not yet fulfilled, to provide a strong possibility of twice or even much higher connectivity in optimally sintered ex-situ MgB2 than in in-situ MgB2.
We prepared polycrystalline SmFeAsO1-xFx (Sm1111) bulk samples by sintering and hot isostatic pressing (HIP) in order to study the effects of phase purity and relative density on the intergranular current density. Sintered and HIPped Sm1111 samples a re denser with fewer impurity phases, such as SmOF and the grain boundary wetting phase, FeAs. We found quite complex magnetization behavior due to variations of both the inter and intragranular current densities. Removing porosity and reducing second phase content enhanced the intergranular current density, but HIPping reduced Tc and the intragranular current density, due to loss of fluorine and reduction of Tc. We believe that the HIPped samples are amongst the purest polycrystalline 1111 samples yet made. However, their intergranular current densities are still small, providing further evidence that polycrystalline pnictides, like polycrystalline cuprates, are intrinsically granular.
129 - T. Shen , J. Jiang , A. Yamamoto 2009
Bi2Sr2CaCu2O8+x is the only cuprate superconductor that can be made into a round-wire conductor form with a high enough critical current density Jc for applications. Here we show that the Jc(5 T,4.2 K) of such Ag-sheathed filamentary wires can be dou bled to more than 1.4x10^5 A/cm^2 by low temperature oxygenation. Careful analysis shows that the improved performance is associated with a 12 K reduction in transition temperature Tc to 80 K and a significant enhancement in intergranular connectivity. In spite of the macroscopically untextured nature of the wire, overdoping is highly effective in producing high Jc values.
We performed high-field magnetotransport and magnetization measurements on a single crystal of the 122-phase iron pnictide Ba(Fe1-xCox)2As2. Unlike the HTS cuprates and 1111-phase oxypnictides, Ba(Fe1-xCox)2As2 showed practically no broadening of the resistive transitions under magnetic fields up to 45 T. The mass anisotropy gamma = Hc2ab/Hc2c deduced from the slopes of the upper critical field dHc2ab/dT = 4.9T/K and dHc2c/dT = 2.5T/K decreases from ~2 near Tc, to ~1.5 at lower temperatures. We observed the irreversibility field close to Hc2, and a rather unusual symmetric volume pinning force curve Fp(H) suggestive of strong pinning nano-structure.
Here, we report an overview of the phase diagram of single layered and double layered Fe arsenide superconductors at high magnetic fields. Our systematic magnetotransport measurements of polycrystalline SmFeAsO$_{1-x}$F$_x$ at different doping levels confirm the upward curvature of the upper critical magnetic field $H_{c2}(T)$ as a function of temperature $T$ defining the phase boundary between the superconducting and metallic states for crystallites with the ab planes oriented nearly perpendicular to the magnetic field. We further show from measurements on single crystals that this feature, which was interpreted in terms of the existence of two superconducting gaps, is ubiquitous among both series of single and double layered compounds. In all compounds explored by us the zero temperature upper critical field $H_{c2}(0)$, estimated either through the Ginzburg-Landau or the Werthamer-Helfand-Hohenberg single gap theories, strongly surpasses the weak coupling Pauli paramagnetic limiting field. This clearly indicates the strong coupling nature of the superconducting state and the importance of magnetic correlations for these materials. Our measurements indicate that the superconducting anisotropy, as estimated through the ratio of the effective masses $gamma = (m_c/m_{ab})^{1/2}$ for carriers moving along the c-axis and the ab planes, respectively, is relatively modest as compared to the high-$T_c$ cuprates, but it is temperature, field and even doping dependent. Finally, our preliminary estimations of the irreversibility field $H_m(T)$, separating the vortex-solid from the vortex-liquid phase in the single layered compounds, indicates that it is well described by the melting of a vortex lattice in a moderately anisotropic uniaxial superconductor.
In order to understand why the inter- and intra-granular current densities of polycrystalline superconducting oxypnictides differ by three orders of magnitude, we have conducted combined magneto-optical and microstructural examinations of representat ive randomly oriented polycrystalline Nd and Sm single-layer oxypnictides. Magneto optical images show that the highest Jc values are observed within single grains oriented with their c axes perpendicular to the observation plane, implying that the intragranular current is anisotropic. The much lower intergranular Jc is at least partially due to many extrinsic factors, because cracks and a ubiquitous wetting As-Fe phase are found at many grain boundaries. However, some grain boundaries are structurally clean under high resolution transmission electron microscopy examination. Because the whole-sample global Jc(5K) values of the two samples examined are 1000-4000 A/cm2, some 10-40 times that found in random, polycrystalline YBa2Cu3O7-x, it appears that the dominant obstruction to intergranular current flow of many present samples is extrinsic, though some intrinsic limitation of current flow across grain boundaries cannot yet be ruled out.
Early studies have found quasi-reversible magnetization curves in polycrystalline bulk rare-earth iron oxypnictides that suggest either wide-spread obstacles to intergranular current or very weak vortex pinning. In the present study of polycrystallin e samarium and neodymium rare-earth iron oxypnictide samples made by high pressure synthesis, the hysteretic magnetization is significantly enhanced. Magneto optical imaging and study of the field dependence of the remanent magnetization as a function of particle size both show that global currents over the whole sample do exist but that the intergranular and intragranular current densities have distinctively different temperature dependences and differ in magnitude by about 1000. Assuming that the highest current density loops are restricted to circulation only within grains leads to values of ~5 MA/cm2 at 5 K and self field, while whole-sample current densities, though two orders of magnitude lower are 1000-10000 A/cm2, some two orders of magnitude higher than in random polycrystalline cuprates. We cannot yet be certain whether this large difference in global and intragrain current density is intrinsic to the oxypnictides or due to extrinsic barriers to current flow, because the samples contain significant second phase, some of which wets the grain boundaries and produces evidences of SNS proximity effect in the whole sample critical current.
The new rare-earth arsenate superconductors are layered, low carrier density compounds with many similarities to the high-Tc cuprates. An important question is whether they also exhibit weak-coupling across randomly oriented grain-boundaries. In this work we show considerable evidence for such weak-coupling by study of the dependence of magnetization in bulk and powdered samples. Bulk sample magnetization curves show very little hysteresis while remanent magnetization shows almost no sample size dependence, even after powdering. We conclude that these samples exhibit substantial electromagnetic granularity on a scale approximating the grain size, though we cannot yet determine whether this is intrinsic or extrinsic.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا