ترغب بنشر مسار تعليمي؟ اضغط هنا

We demonstrated transferring the stability of one highly stable clock laser operating at 729 nm to another less stable laser operating at 698 nm. The two different wavelengths were bridged using an optical frequency comb. The improved stability of th e clock laser at 698 nm enabled us to evaluate the systematic frequency shifts of the Sr optical lattice clock with shorter averaging time. We determined the absolute frequency of the clock transition 1S0 - 3P0 in 87Sr to be 429 228 004 229 873.9 (1.4) Hz referenced to the SI second on the geoid via International Atomic Time (TAI).
We propose a new quantum-computing scheme using ultracold neutral ytterbium atoms in an optical lattice. The nuclear Zeeman sublevels define a qubit. This choice avoids the natural phase evolution due to the magnetic dipole interaction between qubits . The Zeeman sublevels with large magnetic moments in the long-lived metastable state are also exploited to address individual atoms and to construct a controlled-multiqubit gate. Estimated parameters required for this scheme show that this proposal is scalable and experimentally feasible.
An anomalous Hall effect and rectification of a Hall voltage are observed by applying a radio-frequency (rf) current through a single-layered ferromagnetic wire located on a coplanar waveguide. The components of the magnetization precession, both in and perpendicular to the plane, can be detected via the Hall voltage rectification of the rf current by incorporating an additional direct (dc) current. In this paper, we propose a phenomenological model, which describes the time-dependent anisotropic magnetoresistance and time-dependent planer Hall effect. The nonlinearity of the spin dynamics accompanied by spin-waves as functions of rf and dc currents is also studied, as well as those of the magnitude and orientation of the external magnetic field.
81 - A. Yamaguchi , K. Motoi , 2008
The rectifying effect of radio-frequency (RF) current is highly sensitive in terms of the spatial spin distribution and dynamics. It emerged that an additional spin wave mode was stimulated by the direct-current (DC) current and that this spin wave w as detectable via rectification of the RF current. A phenomenological model to describe the time-dependent anisotropic magnetoresistance or time-dependent planer Hall effect is proposed and found to correlate well to the experimental results. The nonlinear spin dynamics accompanying additional spin waves are studied as functions of the RF and DC currents, the external magnetic field, and the applied field direction.
The broadband ferromagnetic resonance measurement using the rectifying effect of Ni81Fe19 wire has been investigated. One wire is deposited on the center strip line of the coplanar waveguide (CPW) and the other one deposited between two strip lines o f CPW. The method is based on the detection of the magnetoresistance oscillation due to the magnetization dynamics induced by the radio frequency field. The magnetic field dependences of the resonance frequency and the rectification spectrum are presented and analytically interpreted on the standpoint of a uniform magnetization precession model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا