ترغب بنشر مسار تعليمي؟ اضغط هنا

The order parameter of a quantum-coherent many-body system can include a phase degree of freedom, which, in the presence of an electromagnetic field, depends on the choice of gauge. Because of the relationship between the phase gradient and the veloc ity, time-of-flight measurements reveal this gradient. Here, we make such measurements using initially trapped Bose-Einstein condensates (BECs) subject to an artificial magnetic field. Vortices are nucleated in the BEC for artificial field strengths above a critical value, which represents a structural phase transition. By comparing to superfluid-hydrodynamic and Gross-Pitaevskii calculations, we confirmed that the transition from the vortex-free state gives rise to a shear in the released BECs spatial distribution, representing a macroscopic method to measure this transition, distinct from direct measurements of vortex entry. Shear is also affected by an artificial electric field accompanying the artificial magnetic field turn-off, which depends on the details of the physical mechanism creating the artificial fields, and implies a natural choice of gauge. Measurements of this kind offer opportunities for studying phase in less-well-understood quantum gas systems.
Spin-orbit coupling (SOC) is an essential ingredient in topological materials, conventional and quantum-gas based alike.~Engineered spin-orbit coupling in ultracold atom systems --unique in their experimental control and measurement opportunities-- p rovides a major opportunity to investigate and understand topological phenomena.~Here we experimentally demonstrate and theoretically analyze a technique for controlling SOC in a two component Bose-Einstein condensate using amplitude-modulated Raman coupling.
Electronic properties like current flow are generally independent of the electrons spin angular momentum, an internal degree of freedom present in quantum particles. The spin Hall effects (SHEs), first proposed 40 years ago, are an unusual class of p henomena where flowing particles experience orthogonally directed spin-dependent Lorentz-like forces, analogous to the conventional Lorentz force for the Hall effect, but opposite in sign for two spin states. Such spin Hall effects have been observed for electrons flowing in spin-orbit coupled materials such as GaAs or InGaAs and for laser light traversing dielectric junctions. Here we observe the spin Hall effect in a quantum-degenerate Bose gas, and use the resulting spin-dependent Lorentz forces to realize a cold-atom spin transistor. By engineering a spatially inhomogeneous spin-orbit coupling field for our quantum gas, we explicitly introduce and measure the requisite spin-dependent Lorentz forces, in excellent agreement with our calculations. This atomtronic circuit element behaves as a new type of velocity-insensitive adiabatic spin-selector, with potential application in devices such as magnetic or inertial sensors. In addition, such techniques --- for both creating and measuring the SHE --- are clear prerequisites for engineering topological insulators and detecting their associated quantized spin Hall effects in quantum gases. As implemented, our system realized a laser-actuated analog to the Datta-Das spin transistor.
Ultracold gases of interacting spin-orbit coupled fermions are predicted to display exotic phenomena such as topological superfluidity and its associated Majorana fermions. Here, we experimentally demonstrate a route to strongly-interacting single-co mponent atomic Fermi gases by combining an s-wave Feshbach resonance (giving strong interactions) and spin-orbit coupling (creating an effective p-wave channel). We identify the Feshbach resonance by its associated atomic loss feature and show that, in agreement with our single-channel scattering model, this feature is preserved and shifted as a function of the spin-orbit coupling parameters.
We present the redshift lower limit of z>0.6035 for the very-high-energy (VHE; E>100 GeV) emitting blazar PKS 1424+240 (PG 1424+240). This limit is inferred from Lyman beta and gamma absorption observed in the far-ultraviolet spectra from the Hubble Space Telescope/Cosmic Origins Spectrograph. No VHE-detected blazar has shown solid spectroscopic evidence of being more distant. At this distance, VHE observations by VERITAS are shown to sample historically large gamma-ray opacity values at 500 GeV, extending beyond tau=4 for low-level models of the extragalactic background light (EBL) and beyond tau=5 for high-levels. The majority of the z=0.6035 absorption-corrected VHE spectrum appears to exhibit a lower flux than an extrapolation of the contemporaneous LAT power-law fit beyond 100 GeV. However, the highest energy VERITAS point is the only point showing agreement with this extrapolation, possibly implying the overestimation of the gamma-ray opacity or the onset of an unexpected VHE spectral feature. A curved log parabola is favored when fitting the full range of gamma-ray data (0.5 to 500 GeV). While fitting the absorption-corrected VHE data alone results in a harder differential power law than that from the full range, the indices derived using three EBL models are consistent with the physically motivated limit set by Fermi acceleration processes.
We present time-resolved spectroscopic and polarimetric observations of the AM Her system EU Cnc. EU Cnc is located near the core of the old open cluster Messier 67; new proper motion measurements indicate that EU Cnc is indeed a member of the star c luster, this system therefore is useful to constrain the formation and evolution of magnetic cataclysmic variables. The spectra exhibit two-component emission features with independent radial velocity variations as well as time-variable cyclotron emission indicating a magnetic field strength of 41 MG. The period of the radial velocity and cyclotron hump variations are consistent with the previously-known photometric period, and the spectroscopic flux variations are consistent in amplitude with previous photometric amplitude measurements. The secondary star is also detected in the spectrum. We also present polarimetric imaging measurements of EU Cnc that show a clear detection of polarization, and the degree of polarization drops below our detection threshold at phases when the cyclotron emission features are fading or not evident. The combined data are all consistent with the interpretation that EU Cnc is a low-state polar in the cluster Messier 67. The mass function of the system gives an estimate of the accretor mass of M_WD >= 0.68 M_sun with M_WD ~ 0.83 M_sun for an average inclination. We are thus able to place a lower limit on the progenitor mass of the accreting WD of >= 1.43 M_sun.
Artificial gauge fields open new possibilities to realize quantum many-body systems with ultracold atoms, by engineering Hamiltonians usually associated with electronic systems. In the presence of a periodic potential, artificial gauge fields may bri ng ultracold atoms closer to the quantum Hall regime. Here, we describe a one-dimensional lattice derived purely from effective Zeeman-shifts resulting from a combination of Raman coupling and radiofrequency magnetic fields. In this lattice, the tunneling matrix element is generally complex. We control both the amplitude and the phase of this tunneling parameter, experimentally realizing the Peierls substitution for ultracold neutral atoms.
Measurement techniques based upon the Hall effect are invaluable tools in condensed matter physics. When an electric current flows perpendicular to a magnetic field, a Hall voltage develops in the direction transverse to both the current and the fiel d. In semiconductors, this behaviour is routinely used to measure the density and charge of the current carriers (electrons in conduction bands or holes in valence bands) -- internal properties of the system that are not accessible from measurements of the conventional resistance. For strongly interacting electron systems, whose behaviour can be very different from the free electron gas, the Hall effects sensitivity to internal properties makes it a powerful tool; indeed, the quantum Hall effects are named after the tool by which they are most distinctly measured instead of the physics from which the phenomena originate. Here we report the first observation of a Hall effect in an ultracold gas of neutral atoms, revealed by measuring a Bose-Einstein condensates transport properties perpendicular to a synthetic magnetic field. Our observations in this vortex-free superfluid are in good agreement with hydrodynamic predictions, demonstrating that the systems global irrotationality influences this superfluid Hall signal.
Interactions between particles can be strongly altered by their environment. We demonstrate a technique for modifying interactions between ultracold atoms by dressing the bare atomic states with light, creating an effective interaction of vastly incr eased range that scatters states of finite relative angular momentum at collision energies where only s-wave scattering would normally be expected. We collided two optically dressed neutral atomic Bose-Einstein condensates with equal, and opposite, momenta and observed that the usual s-wave distribution of scattered atoms was altered by the appearance of d- and g-wave contributions. This technique is expected to enable quantum simulation of exotic systems, including those predicted to support Majorana fermions.
609 - Kenneth C. Wong 2010
Using new photometric and spectroscopic data in the fields of nine strong gravitational lenses that lie in galaxy groups, we analyze the effects of both the local group environment and line-of-sight galaxies on the lens potential. We use Monte Carlo simulations to derive the shear directly from measurements of the complex lens environment, providing the first detailed independent check of the shear obtained from lens modeling. We account for possible tidal stripping of the group galaxies by varying the fraction of total mass apportioned between the group dark matter halo and individual group galaxies. The environment produces an average shear of gamma = 0.08 (ranging from 0.02 to 0.17), significant enough to affect quantities derived from lens observables. However, the direction and magnitude of the shears do not match those obtained from lens modeling in three of the six 4-image systems in our sample (B1422, RXJ1131, and WFI2033). The source of this disagreement is not clear, implying that the assumptions inherent in both the environment and lens model approaches must be reconsidered. If only the local group environment of the lens is included, the average shear is gamma = 0.05 (ranging from 0.01 to 0.14), indicating that line-of-sight contributions to the lens potential are not negligible. We isolate the effects of various theoretical and observational uncertainties on our results. Of those uncertainties, the scatter in the Faber-Jackson relation and error in the group centroid position dominate. Future surveys of lens environments should prioritize spectroscopic sampling of both the local lens environment and objects along the line of sight, particularly those bright (I < 21.5) galaxies projected within 5 of the lens.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا