ترغب بنشر مسار تعليمي؟ اضغط هنا

Magneto-transport experiments on ABC-stacked suspended trilayer graphene reveal a complete splitting of the twelve-fold degenerated lowest Landau level, and, in particular, the opening of an exchange-driven gap at the charge neutrality point. A quant itative analysis of distinctness of the quantum Hall plateaus as a function of field yields a hierarchy of the filling factors: u=6, 4, and 0 are the most pronounced, followed by u=3, and finally u=1, 2 and 5. Apart from the appearance of a u=4 state, which is probably caused by a layer asymmetry, this sequence is in agreement with Hunds rules for ABC-stacked trilayer graphene.
We measure spin transport in high mobility suspended graphene (mu ~ 10^5 cm^2/Vs), obtaining a (spin) diffusion coefficient of 0.1 m^2/s and giving a lower bound on the spin relaxation time (tau_s ~ 150 ps) and spin relaxation length (lambda_s=4.7 mu m) for intrinsic graphene. We develop a theoretical model considering the different graphene regions of our devices that explains our experimental data.
We report a change of three orders of magnitudes in the resistance of a suspended bilayer graphene flake which varies from a few k$Omega$s in the high carrier density regime to several M$Omega$s around the charge neutrality point (CNP). The correspon ding transport gap is 8 meV at 0.3 K. The sequence of appearing quantum Hall plateaus at filling factor $ u=2$ followed by $ u=1$ suggests that the observed gap is caused by the symmetry breaking of the lowest Landau level. Investigation of the gap in a tilted magnetic field indicates that the resistance at the CNP shows a weak linear decrease for increasing total magnetic field. Those observations are in agreement with a spontaneous valley splitting at zero magnetic field followed by splitting of the spins originating from different valleys with increasing magnetic field. Both, the transport gap and $B$ field response point toward spin polarized layer antiferromagnetic state as a ground state in the bilayer graphene sample. The observed non-trivial dependence of the gap value on the normal component of $B$ suggests possible exchange mechanisms in the system.
The quantum Hall effect is a remarkable manifestation of quantized transport in a two-dimensional electron gas. Given its technological relevance, it is important to understand its development in realistic nanoscale devices. In this work we present h ow the appearance of different edge channels in a field-effect device is influenced by the inhomogeneous capacitance profile existing near the sample edges, a condition of particular relevance for graphene. We apply this practical idea to experiments on high quality graphene, demonstrating the potential of quantum Hall transport as a spatially resolved probe of density profiles near the edge of this two-dimensional electron gas.
We have measured the magneto-resistance of freely suspended high-mobility bilayer graphene. For magnetic fields $B>1$ T we observe the opening of a field induced gap at the charge neutrality point characterized by a diverging resistance. For higher f ields the eight-fold degenerated lowest Landau level lifts completely. Both the sequence of this symmetry breaking and the strong transition of the gap-size point to a ferromagnetic nature of the insulating phase developing at the charge neutrality point.
85 - N. Tombros 2010
The recent observation of fractional quantum Hall effect in high mobility suspended graphene devices introduced a new direction in graphene physics, the field of electron-electron interaction dynamics. However, the technique used currently for the fa brication of such high mobility devices has several drawbacks. The most important is that the contact materials available for electronic devices are limited to only a few metals (Au, Pd, Pt, Cr and Nb) since only those are not attacked by the reactive acid (BHF) etching fabrication step. Here we show a new technique which leads to mechanically stable suspended high mobility graphene devices which is compatible with almost any type of contact material. The graphene devices prepared on a polydimethylglutarimide based organic resist show mobilities as high as 600.000 cm^2/Vs at an electron carrier density n = 5.0 10^9 cm^-2 at 77K. This technique paves the way towards complex suspended graphene based spintronic, superconducting and other types of devices.
Spin relaxation in graphene is investigated in electrical graphene spin valve devices in the non-local geometry. Ferromagnetic electrodes with in-plane magnetizations inject spins parallel to the graphene layer. They are subject to Hanle spin precess ion under a magnetic field $B$ applied perpendicular to the graphene layer. Fields above 1.5 T force the magnetization direction of the ferromagnetic contacts to align to the field, allowing injection of spins perpendicular to the graphene plane. A comparison of the spin signals at B = 0 and B = 2 T shows a 20 % decrease in spin relaxation time for spins perpendicular to the graphene layer compared to spins parallel to the layer. We analyze the results in terms of the different strengths of the spin orbit effective fields in the in-plane and out-of-plane directions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا