ترغب بنشر مسار تعليمي؟ اضغط هنا

Knotty structures of Herbig-Haro jets are common phenomena, and knowing the origin of these structures is essential for understanding the processes of jet formation. Basically, there are two theoretical approaches: different types of instabilities in stationary flow, and velocity variations in the flow. We investigate the structures with different radial velocities in the knots of the HL Tau jet as well as its unusual behaviour starting from 20 arcsec from the source. Collation of radial velocity data with proper motion measurements of emission structures in the jet of HL Tau makes it possible to understand the origin of these structures and decide on the mechanism for the formation of the knotty structures in Herbig-Haro flows. We present observations obtained with a 6 m telescope (Russia) using the SCORPIO camera with scanning Fabry-Perot interferometer. Two epochs of the observations of the HL/XZ Tau region in Halpha emission (2001 and 2007) allowed us to measure proper motions for high and low radial velocity structures. The structures with low and high radial velocities in the HL Tau jet show the same proper motion. The point where the HL Tau jet bents to the north (it coincides with the trailing edge of so-called knot A) is stationary, i.e. does not have any perceptible proper motion and is visible in Halpha emission only. We conclude that the high- and low- velocity structures in the HL Tau jet represent bow-shocks and Mach disks in the internal working surfaces of episodic outflows. The bend of the jet and the brightness increase starting some distance from the source coincides with the observed stationary deflecting shock. The increase of relative surface brightness of bow-shocks could be the result of the abrupt change of the physical conditions of the ambient medium as well as the interaction of a highly collimated flow and the side wind from XZ Tau.
154 - O. K. Silchenko 2010
We have studied unbarred S0 galaxies, NGC 3599 and NGC 3626, the members of the X-ray bright group Leo II, by means of 3D spectroscopy, long-slit spectroscopy, and imaging, with the aim to identify epoch and mechanismsof their transformation from spi rals. Both galaxies have appeared to bear a complex of features resulting obviously from minor merging: decoupled gas kinematics, nuclear starforming rings, and multi-tiered oval large-scale stellar disks. The weak-emission line nucleus of NGC 3599 bears all signs of the Seyfert activity, according to the line-ratio diagnostics of the gas excitation mechanism. After all, we conclude that the transformation of these lenticular galaxies has had place about 1-2 Gyr ago, through the gravitational mechanisms not related to hot intragroup medium of Leo II.
We present new broad-band optical images of some merging Seyfert galaxies that were earlier considered to be non-interacting objects. On our deep images obtained at the Russian 6-m telescope we have detected elongated tidal envelopes belonging to sat ellites debris with a surface R-band brightness about 25-26.5 mag/arcsec^2. These structures are invisible in Sloan Digital Sky Survey (SDSS) pictures because of their photometric limit. We found that 35 per cent of the sample of isolated galaxies has undergone merging during the last 0.5-1 Gyr. Our results suggest that statistic studies based on popular imaging surveys (SDSS or Second Palomar Observatory Sky Survey (POSS-II)) can lead to underestimation of the fraction of minor mergers among galaxies with active nuclei (AGN). This fact impacts on statistics and must be taken into consideration when finding connection between minor/major merging or interactions and nucleus activity.
We report the results of our observations of the nebular complex MH9/10/11, associated with the ULX HoIX X-1, with scanning Fabry-Perot Interferometer. Two regions differing by their kinematics and line ratios may be distinguished, roughly correspond ing to the bubble nebula MH9/10 and fainter HII-region MH11. For MH9/10 we find the expansion rate of 20-70km/s that is different for the approaching and receding parts. MH11 is characterised by very low velocity dispersion (less than or about 15km/s) and nearly constant line-of-sight velocities. Properties of MH11 may be explained by photoionization of gas with hydrogen density of about 0.2cm^-3. Luminosity required for that should be of the order of 10^39erg/s. Similar power source is required to explain the expansion rate of MH9/10. Modelling results also indicate that oxygen abundance in MH11 is about solar.
Spectroscopic observations of three lenticular (S0) galaxies (NGC 1167, NGC 4150, and NGC 6340) and one SBa galaxy (NGC 2273) have been taken with the 6-m telescope of the Special AstrophysicalObservatory of the Russian Academy of Sciences aimed to s tudy the structure and kinematic properties of early-type disk galaxies. The radial profiles of the stellar radial velocities and the velocity dispersion are measured. N-body simulations are used to construct dynamical models of galaxies containing a stellar disk, bulge, and halo. The masses of individual components are estimated formaximum-mass disk models. A comparison of models with estimated rotational velocities and the stellar velocity dispersion suggests that the stellar disks in lenticular galaxies are overheated; i.e., there is a significant excess velocity dispersion over the minimum level required to maintain the stability of the disk. This supports the hypothesis that the stellar disks of S0 galaxies were subject to strong gravitational perturbations. The relative thickness of the stellar disks in the S0 galaxies considered substantially exceed the typical disk thickness of spiral galaxies.
We have studied the kinematics of the ionized gas and stellar component in Mrk334 using methods of panoramic (3D) spectroscopy. The observations were performed at the prime focus of the SAO RAS 6-m telescope with the integral-field spectrograph MPFS (Afanasiev et al. 2001) and with a scanning Fabry-Perot interferometer (FPI), installed on the multimode device SCORPIO (Afanasiev & Moiseev 2005). Based on these data, the monochromatic maps and velocity fields in different emission lines of the ionized gas were constructed. The diagnostic diagrams have been made based on the emission lines ratios.
50 - A. V. Moiseev 2008
The kinematics of galactic rings were studied with a scanning Fabry-Perot interferometer mounted in the multi-mode focal reducer SCORPIO (Afanasiev & Moiseev 2005) at the SAO RAS 6-m telescope. The analysis of the ionized gas velocity fields allows u s to understand the nature of the ring formation in several galaxies. The different types of the rings in the presented objects (resonanced, collisional, polar) were caused by the various sorts of interactions: merging, head-on collisions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا