ترغب بنشر مسار تعليمي؟ اضغط هنا

Using atomistic computer simulations, we study how ion irradiation can be used to alter the morphology of a graphene monolayer by introducing defects of specific type, and to cut graphene sheets. Based on the results of our analytical potential molec ular dynamics simulations, a kinetic Monte Carlo code is developed for modelling morphological changes in a graphene monolayer under irradiation at macroscopic time scales. Impacts of He, Ne, Ar, Kr, Xe and Ga ions with kinetic energies ranging from tens of eV to 10 MeV and angles of incidence between 0circ and 88circ are studied. Our results provide microscopic insights into the response of graphene to ion irradiation and can directly be used for the optimization of graphene cutting and patterning with focused ion beams.
By combining classical molecular dynamics simulations and density functional theory total energy calculations, we study the possibility of doping graphene with B/N atoms using low-energy ion irradiation. Our simulations show that the optimum irradiat ion energy is 50 eV with substitution probabilities of 55% for N and 40% for B. We further estimate probabilities for different defect configurations to appear under B/N ion irradiation. We analyze the processes responsible for defect production and report an effective swift chemical sputtering mechanism for N irradiation at low energies (~125 eV) which leads to production of single vacancies. Our results show that ion irradiation is a promising method for creating hybrid C-B/N structures for future applications in the realm of nanoelectronics.
While crystalline two-dimensional materials have become an experimental reality during the past few years, an amorphous 2-D material has not been reported before. Here, using electron irradiation we create an sp2-hybridized one-atom-thick flat carbon membrane with a random arrangement of polygons, including four-membered carbon rings. We show how the transformation occurs step-by-step by nucleation and growth of low-energy multi-vacancy structures constructed of rotated hexagons and other polygons. Our observations, along with first-principles calculations, provide new insights to the bonding behavior of carbon and dynamics of defects in graphene. The created domains possess a band gap, which may open new possibilities for engineering graphene-based electronic devices.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا