ترغب بنشر مسار تعليمي؟ اضغط هنا

Atomistic simulations of the implantation of low energy boron and nitrogen ions into graphene

311   0   0.0 ( 0 )
 نشر من قبل Jani Kotakoski
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By combining classical molecular dynamics simulations and density functional theory total energy calculations, we study the possibility of doping graphene with B/N atoms using low-energy ion irradiation. Our simulations show that the optimum irradiation energy is 50 eV with substitution probabilities of 55% for N and 40% for B. We further estimate probabilities for different defect configurations to appear under B/N ion irradiation. We analyze the processes responsible for defect production and report an effective swift chemical sputtering mechanism for N irradiation at low energies (~125 eV) which leads to production of single vacancies. Our results show that ion irradiation is a promising method for creating hybrid C-B/N structures for future applications in the realm of nanoelectronics.

قيم البحث

اقرأ أيضاً

As impermeable to gas molecules and at the same time transparent to high-energy ions, graphene has been suggested as a window material for separating a high-vacuum ion beam system from targets kept at ambient conditions. However, accumulation of irra diation-induced damage in the graphene membrane may give rise to its mechanical failure. Using atomistic simulations, we demonstrate that irradiated graphene even with a high vacancy concentration does not show signs of such instability, indicating a considerable robustness of graphene windows. We further show that upper and lower estimates for the irradiation damage in graphene can be set using a simple model.
We devise automated workflows for the calculation of Helmholtz and Gibbs free energies and their temperature and pressure dependence and provide the corresponding computational tools. We employ non-equilibrium thermodynamics for evaluating the free e nergy of solid and liquid phases at a given temperature and reversible scaling for computing free energies over a wide range of temperatures, including the direct integration of $P$-$T$ coexistence lines. By changing the chemistry and the interatomic potential, alchemical and upscaling free energy calculations are possible. Several examples illustrate the accuracy and efficiency of our implementation.
Nitrogen-vacancy (NV-) color centers in diamond were created by implantation of 7 keV 15N (I = 1/2) ions into type IIa diamond. Optically detected magnetic resonance was employed to measure the hyperfine coupling of the NV- centers. The hyperfine spe ctrum from 15NV- arising from implanted 15N can be distinguished from 14NV- centers created by native 14N (I = 1) sites. Analysis indicates 1 in 40 implanted 15N atoms give rise to an optically observable 15NV- center. This report ultimately demonstrates a mechanism by which the yield of NV- center formation by nitrogen implantation can be measured.
Nitrogen-vacancy (NV) centers in diamond have attracted a great deal of attention because of their possible use in information processing and electromagnetic sensing technologies. We examined theatomistic generation mechanism for the NV defect aligne d in the [111] direction of C(111) substrates. We found that N is incorporated in the C bilayers during the lateral growth arising from a sequence of kink propagation along the step edge down to [-1,-1,2]. As a result, the atomic configuration with the N-atom lone-pair pointing in the [111] direction is formed, which causes preferential alignment of NVs. Our model is consistent with recent experimental data for perfect NV alignment in C(111) substrates.
Two-dimensional alloys of carbon and nitrogen represent an urgent interest due to prospective applications in nanomechanical and optoelectronic devices. Stability of these chemical structures must be understood as a function of their composition. The present study employs hybrid density functional theory and reactive molecular dynamics simulations to get insights regarding how many nitrogen atoms can be incorporated into the graphene sheet without destroying it. We conclude that (1) C:N=56:28 structure and all nitrogen-poorer structures maintain stability at 1000 K; (2) stability suffers from N-N bonds; (3) distribution of electron density heavily depends on the structural pattern in the N-doped graphene. Our calculations support experimental efforts on the production of highly N-doped graphene and tuning mechanical and optoelectronic properties of graphene.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا