ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider pulse-coupled Leaky Integrate-and-Fire neural networks with randomly distributed synaptic couplings. This random dilution induces fluctuations in the evolution of the macroscopic variables and deterministic chaos at the microscopic level. Our main aim is to mimic the effect of the dilution as a noise source acting on the dynamics of a globally coupled non-chaotic system. Indeed, the evolution of a diluted neural network can be well approximated as a fully pulse coupled network, where each neuron is driven by a mean synaptic current plus additive noise. These terms represent the average and the fluctuations of the synaptic currents acting on the single neurons in the diluted system. The main microscopic and macroscopic dynamical features can be retrieved with this stochastic approximation. Furthermore, the microscopic stability of the diluted network can be also reproduced, as demonstrated from the almost coincidence of the measured Lyapunov exponents in the deterministic and stochastic cases for an ample range of system sizes. Our results strongly suggest that the fluctuations in the synaptic currents are responsible for the emergence of chaos in this class of pulse coupled networks.
Equilibrium and out-of-equilibrium transitions of an off-lattice protein model have been identified and studied. In particular, the out-of-equilibrium dynamics of the protein undergoing mechanical unfolding is investigated, and by using a work fluctu ation relation, the system free energy landscape is evaluated. Three different structural transitions are identified along the unfolding pathways. Furthermore, the reconstruction of the the free and potential energy profiles in terms of inherent structure formalism allows us to put in direct correspondence these transitions with the equilibrium thermal transitions relevant for protein folding/unfolding. Through the study of the fluctuations of the protein structure at different temperatures, we identify the dynamical transitions, related to configurational rearrangements of the protein, which are precursors of the thermal transitions.
The synchronization transition between two coupled replicas of spatio-temporal chaotic systems in 2+1 dimensions is studied as a phase transition into an absorbing state - the synchronized state. Confirming the scenario drawn in 1+1 dimensional syste ms, the transition is found to belong to two different universality classes - Multiplicative Noise (MN) and Directed Percolation (DP) - depending on the linear or nonlinear character of damage spreading occurring in the coupled systems. By comparing coupled map lattice with two different stochastic models, accurate numerical estimates for MN in 2+1 dimensions are obtained. Finally, aiming to pave the way for future experimental studies, slightly non-identical replicas have been considered. It is shown that the presence of small differences between the dynamics of the two replicas acts as an external field in the context of absorbing phase transitions, and can be characterized in terms of a suitable critical exponent.
Two replicas of spatially extended chaotic systems synchronize to a common spatio-temporal chaotic state when coupled above a critical strength. As a prototype of each single spatio-temporal chaotic system a lattice of maps interacting via power-law coupling is considered. The synchronization transition is studied as a non-equilibrium phase transition, and its critical properties are analyzed at varying the spatial interaction range as well as the nonlinearity of the dynamical units composing each system. In particular, continuous and discontinuous local maps are considered. In both cases the transitions are of the second order with critical indexes varying with the exponent characterizing the interaction range. For discontinuous maps it is numerically shown that the transition belongs to the {it anomalous directed percolation} (ADP) family of universality classes, previously identified for L{e}vy-flight spreading of epidemic processes. For continuous maps, the critical exponents are different from those characterizing ADP, but apart from the nearest-neighbor case, the identification of the corresponding universality classes remains an open problem. Finally, to test the influence of deterministic correlations for the studied synchronization transitions, the chaotic dynamical evolutions are substituted by suitable stochastic models. In this framework and for the discontinuous case, it is possible to derive an effective Langevin description that corresponds to that proposed for ADP.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا