ﻻ يوجد ملخص باللغة العربية
Equilibrium and out-of-equilibrium transitions of an off-lattice protein model have been identified and studied. In particular, the out-of-equilibrium dynamics of the protein undergoing mechanical unfolding is investigated, and by using a work fluctuation relation, the system free energy landscape is evaluated. Three different structural transitions are identified along the unfolding pathways. Furthermore, the reconstruction of the the free and potential energy profiles in terms of inherent structure formalism allows us to put in direct correspondence these transitions with the equilibrium thermal transitions relevant for protein folding/unfolding. Through the study of the fluctuations of the protein structure at different temperatures, we identify the dynamical transitions, related to configurational rearrangements of the protein, which are precursors of the thermal transitions.
Non-equilibrium aspects of the BCS model have fascinated physicists for decades, from the seminal works of Eliashberg to modern realizations in cold atom experiments. The latter scenarios have lead to a great deal of interest in the quench dynamics o
Prediction of pair potential given a typical configuration of an interacting classical system is a difficult inverse problem. There exists no exact result that can predict the potential given the structural information. We demonstrate that using mach
In this work we compare and characterize the behavior of Langevin and Dissipative Particle Dynamics (DPD) thermostats in a broad range of non-equilibrium simulations of polymeric systems. Polymer brushes in relative sliding motion, polymeric liquids
Experiments in bulk water confirm the existence of two local arrangements of water molecules with different densities, but, because of inevitable freezing at low temperature $T$, can not ascertain whether the two arrangements separate in two phases.
Biological activity gives rise to non-equilibrium fluctuations in the cytoplasm of cells; however, there are few methods to directly measure these fluctuations. Using a reconstituted actin cytoskeleton, we show that the bending dynamics of embedded m