ترغب بنشر مسار تعليمي؟ اضغط هنا

78 - C. Boeche , A. Siebert , T. Piffl 2014
We provide new constraints on the chemo-dynamical models of the Milky Way by measuring the radial and vertical chemical gradients for the elements Mg, Al, Si, Ti, and Fe in the Galactic disc and the gradient variations as a function of the distance f rom the Galactic plane ($Z$). We selected a sample of giant stars from the RAVE database using the gravity criterium 1.7$<$log g$<$2.8. We created a RAVE mock sample with the Galaxia code based on the Besanc con model and selected a corresponding mock sample to compare the model with the observed data. We measured the radial gradients and the vertical gradients as a function of the distance from the Galactic plane $Z$ to study their variation across the Galactic disc. The RAVE sample exhibits a negative radial gradient of $d[Fe/H]/dR=-0.054$ dex kpc$^{-1}$ close to the Galactic plane ($|Z|<0.4$ kpc) that becomes flatter for larger $|Z|$. Other elements follow the same trend although with some variations from element to element. The mock sample has radial gradients in fair agreement with the observed data. The variation of the gradients with $Z$ shows that the Fe radial gradient of the RAVE sample has little change in the range $|Z|lesssim0.6$ kpc and then flattens. The iron vertical gradient of the RAVE sample is slightly negative close to the Galactic plane and steepens with $|Z|$. The mock sample exhibits an iron vertical gradient that is always steeper than the RAVE sample. The mock sample also shows an excess of metal-poor stars in the [Fe/H] distributions with respect to the observed data. These discrepancies can be reduced by decreasing the number of thick disc stars and increasing their average metallicity in the Besanc con model.
73 - C. Boeche , A. Siebert , T. Piffl 2013
Aim: We aim at measuring the chemical gradients of the elements Mg, Al, Si, and Fe along the Galactic radius to provide new constraints on the chemical evolution models of the Galaxy and Galaxy models such as the Besancon model. Methods: We analyse d three different samples selected from three independent datasets: a sample of 19,962 dwarf stars selected from the RAVE database, a sample of 10,616 dwarf stars selected from the Geneva-Copenhagen Survey (GCS) dataset, and a mock sample (equivalent to the RAVE sample) created by using the GALAXIA code, which is based on the Besancon model. We measured the chemical gradients as functions of the guiding radius (Rg) at different distances from the Galactic plane reached by the stars along their orbit (Zmax). Results: The chemical gradients of the RAVE and GCS samples are negative and show consistent trends, although they are not equal: at Zmax<0.4 kpc and 4.5<Rg(kpc)<9.5, the iron gradient for the RAVE sample is d[Fe/H]/dRg=-0.065 dex kpc^{-1}, whereas for the GCS sample it is d[Fe/H]/dRg=-0.043 dex kpc^{-1} with internal errors +-0.002 and +-0.004 dex kpc^{-1}, respectively. The gradients of the RAVE and GCS samples become flatter at larger Zmax. Conversely, the mock sample has a positive iron gradient of d[Fe/H]/dRg=+0.053+-0.003 dex kpc^{-1} at Zmax<0.4 kpc and remains positive at any Zmax. These positive and unrealistic values originate from the lack of correlation between metallicity and tangential velocity in the Besancon model. The discrepancies between the observational samples and the mock sample can be reduced by i) decreasing the density, ii) decreasing the vertical velocity, and iii) increasing the metallicity of the thick disc in the Besancon model.
We present chemical elemental abundances for $36,561$ stars observed by the RAdial Velocity Experiment (RAVE), an ambitious spectroscopic survey of our Galaxy at Galactic latitudes $|$b$|>25^{circ}$ and with magnitudes in the range 9$<I_{DENIS}<$13. RAVE spectra cover the Ca-triplet region at 8410--8795AA with resolving power R$sim$7500. This first data release of the RAVE chemical catalogue is complementary to the third RAVE data release of radial velocities and stellar parameters, and it contains chemical abundances for the elements Mg, Al, Si, Ca, Ti, Fe and Ni, with a mean error of $sim$0.2 dex, as judged from accuracy tests performed on synthetic and real spectra. Abundances are estimated through a dedicated processing pipeline in which the curve of growth of individual lines is obtained from a library of absorption-line equivalent widths to construct a model spectrum that is then matched to the observed spectrum via a $chi^2$-minimization technique. We plan to extend this pipeline to include estimates for other elements, such as oxygen and sulfur, in future data releases.
We present the third data release of the RAdial Velocity Experiment (RAVE) which is the first milestone of the RAVE project, releasing the full pilot survey. The catalog contains 83,072 radial velocity measurements for 77,461 stars in the southern ce lestial hemisphere, as well as stellar parameters for 39,833 stars. This paper describes the content of the new release, the new processing pipeline, as well as an updated calibration for the metallicity based upon the observation of additional standard stars. Spectra will be made available in a future release. The data release can be accessed via the RAVE webpage: http://www.rave-survey.org.
The RAdial Velocity Experiment (RAVE) is an ambitious survey to measure the radial velocities, temperatures, surface gravities, metallicities and abundance ratios for up to a million stars using the 1.2-m UK Schmidt Telescope of the Anglo-Australian Observatory (AAO), over the period 2003 - 2011. The survey represents a big advance in our understanding of our own Milky Way galaxy. The main data product will be a southern hemisphere survey of about a million stars. Their selection is based exclusively on their I--band colour, so avoiding any colour-induced bias. RAVE is expected to be the largest spectroscopic survey of the Solar neighbourhood in the coming decade, but with a significant fraction of giant stars reaching out to 10 kpc from the Sun. RAVE offers the first truly representative inventory of stellar radial velocities for all major components of the Galaxy. Here we present the first scientific results of this survey as well as its second data release which doubles the number of previously released radial velocities. For the first time, the release also provides atmospheric parameters for a large fraction of the second year data, making it an unprecedented tool to study the formation of the Milky Way. Plans for further data releases are outlined.
RAVE, the RAdial Velocity Experiment, is an ambitious program to conduct a survey to measure the radial velocities, metallicities and abundance ratios for up to a million stars using the 1.2-m UK Schmidt Telescope of the Anglo-Australian Observatory (AAO), over the period 2003 - 2010. The survey represents a giant leap forward in our understanding of our own Milky Way galaxy, providing a vast stellar kinematic database larger than any other survey proposed for this coming decade. The main data product will be a southern hemisphere survey of about a million stars. This survey would comprise 0.7 million thin disk main sequence stars, 250,000 thick disk stars, 100,000 bulge and halo stars, and a further 50,000 giant stars including some out to 10 kpc from the Sun. RAVE will offer the first truly representative inventory of stellar radial velocities for all major components of the Galaxy. Here we present the first scientific results of this survey as well as its second data release which doubles the number of previously released radial velocities. For the first time, the release also provides atmospheric parameters for a large fraction of the 2nd year data making it an unprecedented tool to study the formation of the Milky Way.
We present a measure of the inclination of the velocity ellipsoid at 1 kpc below the Galactic plane using a sample of red clump giants from the RAVE DR2 release. We find that the velocity ellipsoid is tilted towards the Galactic plane with an inclina tion of 7.3 +/-1.8 degree. We compare this value to computed inclinations for two mass models of the Milky Way. We find that our measurement is consistent with a short scale length of the stellar disc (Rd ~2 kpc) if the dark halo is oblate or with a long scale length (Rd~3 kpc) if the dark halo is prolate. Once combined with independent constraints on the flattening of the halo, our measurement suggests that the scale length is approximately halfway between these two extreme values, with a preferred range [2.5-2.7] kpc for a nearly spherical halo. Nevertheless, no model can be clearly ruled out. With the continuation of the RAVE survey, it will be possible to provide a strong constraint on the mass distribution of the Milky Way using refined measurements of the orientation of the velocity ellipsoid.
We present the second data release of the Radial Velocity Experiment (RAVE), an ambitious spectroscopic survey to measure radial velocities (RVs) and stellar atmosphere parameters of up to one million stars using the 6dF multi-object spectrograph on the 1.2-m UK Schmidt Telescope of the Anglo-Australian Observatory (AAO). It is obtaining medium resolution spectra (median R=7,500) in the Ca-triplet region (8,410--8,795 AA) for southern hemisphere stars in the magnitude range 9<I<12. Following the first data release (Steinmetz et al. 2006) the current release doubles the sample of published RVs, now containing 51,829 RVs for 49,327 individual stars observed on 141 nights between April 11 2003 and March 31 2005. Comparison with external data sets shows that the new data collected since April 3 2004 show a standard deviation of 1.3 km/s, about twice better than for the first data release. For the first time this data release contains values of stellar parameters from 22,407 spectra of 21,121 individual stars. They were derived by a penalized chi^2 method using an extensive grid of synthetic spectra calculated from the latest version of Kurucz models. From comparison with external data sets, our conservative estimates of errors of the stellar parameters (for a spectrum with S/N=40) are 400 K in temperature, 0.5 dex in gravity, and 0.2 dex in metallicity. We note however that the internal errors estimated from repeat RAVE observations of 822 stars are at least a factor 2 smaller. We demonstrate that the results show no systematic offsets if compared to values derived from photometry or complementary spectroscopic analyses. The data release includes proper motion and photometric measurements. It can be accessed via the RAVE webpage: http://www.rave-survey.org and through CDS.
We have searched for in-falling stellar streams on to the local Milky Way disc in the CORAVEL and RAVE surveys. The CORAVEL survey consists of local dwarf stars (Nordstrom et al. Geneva-Copenhagen survey) and local Famaey et al. giant stars. We selec t RAVE stars with radial velocities that are sensitive to the Galactic vertical space velocity (Galactic latitude b < -45 deg). Kuiper statistics have been employed to test the symmetry of the Galactic vertical velocity distribution functions in these samples for evidence of a net vertical flow that could be associated with a (tidal?) stream of stars with vertically coherent kinematics. In contrast to the `Field of Streams found in the outer halo, we find that the local volumes of the solar neighbourhood sampled by the CORAVEL dwarfs (complete within ~3 x 10^-4 kpc^3), CORAVEL giants (complete within ~5 x 10^-2 kpc^3) and RAVE (5-15% complete within ~8 kpc^3) are devoid of any vertically coherent streams containing hundreds of stars. This is sufficiently sensitive to allow our RAVE sample to rule out the passing of the tidal stream of the disrupting Sagittarius (Sgr) dwarf galaxy through the solar neighbourhood. This agrees with the most recent determination of its orbit and dissociates it from the Helmi et al. halo stream. Our constraints on the absence of the Sgr stream near the Sun could prove a useful tool for discriminating between Galactic potential models. The lack of a net vertical flow through the solar neighbourhood in the CORAVEL giants and RAVE samples argues against the Virgo overdensity crossing the disc near the Sun. There are no vertical streams in the CORAVEL giants and RAVE samples with stellar densities >1.6 x 10^4 and 1.5 x 10^3 stars kpc^-3 respectively and therefore no evidence for locally enhanced dark matter.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا