ﻻ يوجد ملخص باللغة العربية
We present chemical elemental abundances for $36,561$ stars observed by the RAdial Velocity Experiment (RAVE), an ambitious spectroscopic survey of our Galaxy at Galactic latitudes $|$b$|>25^{circ}$ and with magnitudes in the range 9$<I_{DENIS}<$13. RAVE spectra cover the Ca-triplet region at 8410--8795AA with resolving power R$sim$7500. This first data release of the RAVE chemical catalogue is complementary to the third RAVE data release of radial velocities and stellar parameters, and it contains chemical abundances for the elements Mg, Al, Si, Ca, Ti, Fe and Ni, with a mean error of $sim$0.2 dex, as judged from accuracy tests performed on synthetic and real spectra. Abundances are estimated through a dedicated processing pipeline in which the curve of growth of individual lines is obtained from a library of absorption-line equivalent widths to construct a model spectrum that is then matched to the observed spectrum via a $chi^2$-minimization technique. We plan to extend this pipeline to include estimates for other elements, such as oxygen and sulfur, in future data releases.
We present the first data release of the Radial Velocity Experiment (RAVE), an ambitious spectroscopic survey to measure radial velocities and stellar atmosphere parameters (temperature, metallicity, surface gravity) of up to one million stars using
RAVE, the RAdial Velocity Experiment, is an ambitious program to conduct a survey to measure the radial velocities, metallicities and abundance ratios for up to a million stars using the 1.2-m UK Schmidt Telescope of the Anglo-Australian Observatory
We present part 2 of the 6th and final Data Release (DR6 or FDR) of the Radial Velocity Experiment (RAVE), a magnitude-limited (9<I<12) spectroscopic survey of Galactic stars randomly selected in the southern hemisphere. The RAVE medium-resolution sp
We present the third data release of the RAdial Velocity Experiment (RAVE) which is the first milestone of the RAVE project, releasing the full pilot survey. The catalog contains 83,072 radial velocity measurements for 77,461 stars in the southern ce
We present the stellar atmospheric parameters (effective temperature, surface gravity, overall metallicity), radial velocities, individual abundances and distances determined for 425 561 stars, which constitute the fourth public data release of the R