ترغب بنشر مسار تعليمي؟ اضغط هنا

The characterization of four new transiting extrasolar planets is presented here. KOI-188b and KOI-195b are bloated hot Saturns, with orbital periods of 3.8 and 3.2 days, and masses of 0.25 and 0.34 M_Jup. They are located in the low-mass range of kn own transiting, giant planets. KOI-192b has a similar mass (0.29 M_Jup) but a longer orbital period of 10.3 days. This places it in a domain where only a few planets are known. KOI-830b, finally, with a mass of 1.27 M_Jup and a period of 3.5 days, is a typical hot Jupiter. The four planets have radii of 0.98, 1.09, 1.2, and 1.08 R_Jup, respectively. We detected no significant eccentricity in any of the systems, while the accuracy of our data does not rule out possible moderate eccentricities. The four objects were first identified by the Kepler Team as promising candidates from the photometry of the Kepler satellite. We establish here their planetary nature thanks to the radial velocity follow-up we secured with the HARPS-N spectrograph at the Telescopio Nazionale Galileo. The combined analyses of the datasets allow us to fully characterize the four planetary systems. These new objects increase the number of well-characterized exoplanets for statistics, and provide new targets for individual follow-up studies. The pre-screening we performed with the SOPHIE spectrograph at the Observatoire de Haute-Provence as part of that study also allowed us to conclude that a fifth candidate, KOI-219.01, is not a planet but is instead a false positive.
In this paper we report a new transiting warm giant planet: KOI-1257 b. It was first detected in photometry as a planet-candidate by the ${it Kepler}$ space telescope and then validated thanks to a radial velocity follow-up with the SOPHIE spectrogra ph. It orbits its host star with a period of 86.647661 d $pm$ 3 s and a high eccentricity of 0.772 $pm$ 0.045. The planet transits the main star of a metal-rich, relatively old binary system with stars of mass of 0.99 $pm$ 0.05 Msun and 0.70 $ pm $ 0.07 Msun for the primary and secondary, respectively. This binary system is constrained thanks to a self-consistent modelling of the ${it Kepler}$ transit light curve, the SOPHIE radial velocities, line bisector and full-width half maximum (FWHM) variations, and the spectral energy distribution. However, future observations are needed to confirm it. The PASTIS fully-Bayesian software was used to validate the nature of the planet and to determine which star of the binary system is the transit host. By accounting for the dilution from the binary both in photometry and in radial velocity, we find that the planet has a mass of 1.45 $ pm $ 0.35 Mjup, and a radius of 0.94 $ pm $ 0.12 Rjup, and thus a bulk density of 2.1 $ pm $ 1.2 g.cm$^{-3}$. The planet has an equilibrium temperature of 511 $pm$ 50 K, making it one of the few known members of the warm-jupiter population. The HARPS-N spectrograph was also used to observe a transit of KOI-1257 b, simultaneously with a joint amateur and professional photometric follow-up, with the aim of constraining the orbital obliquity of the planet. However, the Rossiter-McLaughlin effect was not clearly detected, resulting in poor constraints on the orbital obliquity of the planet.
We confirm the planetary nature of Kepler-412b, listed as planet candidate KOI-202 in the Kepler catalog, thanks to our radial velocity follow-up program of Kepler-released planet candidates, which is on going with the SOPHIE spectrograph. We perform ed a complete analysis of the system by combining the Kepler observations from Q1 to Q15, to ground-based spectroscopic observations that allowed us to derive radial velocity measurements, together with the host star parameters and properties. We also analyzed the light curve to derive the stars rotation period and the phase function of the planet, including the secondary eclipse. We found the planet has a mass of 0.939 $pm$ 0.085 M$_{Jup}$ and a radius of 1.325 $pm$ 0.043 R$_{Jup}$ which makes it a member of the bloated giant subgroup. It orbits its G3 V host star in 1.72 days. The system has an isochronal age of 5.1 Gyr, consistent with its moderate stellar activity as observed in the Kepler light curve and the rotation of the star of 17.2 $pm$ 1.6 days. From the detected secondary, we derived the day side temperature as a function of the geometric albedo and estimated the geometrical albedo, Ag, is in the range 0.094 to 0.013. The measured night side flux corresponds to a night side brightness temperature of 2154 $pm$ 83 K, much greater than what is expected for a planet with homogeneous heat redistribution. From the comparison to star and planet evolution models, we found that dissipation should operate in the deep interior of the planet. This modeling also shows that despite its inflated radius, the planet presents a noticeable amount of heavy elements, which accounts for a mass fraction of 0.11 $pm$ 0.04.
We present the detection and characterization of the two new transiting, close-in, giant extrasolar planets KOI-200b and KOI-889b. They were first identified by the Kepler team as promising candidates from photometry of the Kepler satellite, then we established their planetary nature thanks to the radial velocity follow-up jointly secured with the spectrographs SOPHIE and HARPS-N. Combined analyses of the whole datasets allow the two planetary systems to be characterized. The planet KOI-200b has mass and radius of 0.68 +/- 0.09 M_Jup and 1.32 +/- 0.14 R_Jup; it orbits in 7.34 days a F8V host star with mass and radius of 1.40 (+0.14/-0.11) M_Sun and 1.51 +/- 0.14 R_Sun. KOI-889b is a massive planet with mass and radius of 9.9 +/- 0.5 M_Jup and 1.03 +/- 0.06 R_Jup; it orbits in 8.88 days an active G8V star with a rotation period of 19.2 +/- 0.3 days, and mass and radius of 0.88 +/- 0.06 M_Sun and 0.88 +/- 0.04 R_Sun. Both planets lie on eccentric orbits and are located just at the frontier between regimes where the tides can explain circularization and where tidal effects are negligible. The two planets are among the first ones detected and characterized thanks to observations secured with HARPS-N, the new spectrograph recently mounted at the Telescopio Nazionale Galileo. These results illustrate the benefits that could be obtained from joint studies using two spectrographs as SOPHIE and HARPS-N.
115 - R. F. Diaz 2011
The mass domain where massive extrasolar planets and brown dwarfs lay is still poorly understood. Indeed, not even a clear dividing line between massive planets and brown dwarfs has been established yet. This is partly due to the paucity of this kind of objects orbiting close to solar-type stars, the so-called brown dwarf desert, that hinders setting up a strong observational base to compare to models and theories of formation and evolution. We search to increase the current sample of massive sub-stellar objects with precise orbital parameters, and to constrain the true mass of detected sub-stellar candidates. The initial identification of sub-stellar candidates is done using precise radial velocity measurements obtained with the SOPHIE spectrograph at the 1.93-m telescope of the Haute-Provence Observatory. Subsequent characterisation of these candidates, with the principal aim of identifying stellar companions in low-inclination orbits, is done by means of different spectroscopic diagnostics, as the measurement of the bisector velocity span and the study of the correlation mask effect. With this objective, we also employed astrometric data from the Hipparcos mission and a novel method of simulating stellar cross-correlation functions. Seven new objects with minimum masses between ~ 10 Mjup and ~90 Mjup are detected. Out of these, two are identified as low-mass stars in low-inclination orbits, and two others have masses below the theoretical deuterium-burning limit, and are therefore planetary candidates. The remaining three are brown dwarf candidates; the current upper limits for their the masses do not allow us to conclude on their nature. Additionally, we have improved on the parameters of an already-known brown dwarf (HD137510b), confirmed by astrometry.
This paper presents the case of CoRoT LRa02_E2_0121, which was initially classified as a Neptune-size transiting-planet candidate on a relatively wide orbit of 36.3 days. Follow-up observations were performed with UVES, Sandiford, SOPHIE and HARPS. T hese observations revealed a faint companion in the spectra. To find the true nature of the system we derived the radial velocities of the faint companion using TODMOR - a two-dimensional correlation technique, applied to the SOPHIE spectra. Modeling the lightcurve with EBAS we discovered a secondary eclipse with a depth of ~0.07%, indicating a diluted eclipsing binary. Combined MCMC modeling of the lightcurve and the radial velocities suggested that CoRoT LRa02_E2_0121 is a hierarchical triple system with an evolved G-type primary and an A-type:F-type grazing eclipsing binary. Such triple systems are difficult to discover.
We report the strategy and results of our radial velocity follow-up campaign with the SOPHIE spectrograph (1.93-m OHP) of four transiting planetary candidates discovered by the Kepler space mission. We discuss the selection of the candidates KOI-428, KOI-410, KOI-552, and KOI-423. KOI-428 was established as a hot Jupiter transiting the largest and the most evolved star discovered so far and is described by Santerne et al. (2011a). KOI-410 does not present radial velocity change greater than 120 m/s, which allows us to exclude at 3 sigma a transiting companion heavier than 3.4 Mjup. KOI-552b appears to be a transiting low-mass star with a mass ratio of 0.15. KOI-423b is a new transiting companion in the overlapping region between massive planets and brown dwarfs. With a radius of 1.22 +- 0.11 Rjup and a mass of 18.0 +- 0.92 Mjup, KOI-423b is orbiting an F7IV star with a period of 21.0874 +- 0.0002 days and an eccentricity of 0.12 +- 0.02. From the four selected Kepler candidates, at least three of them have a Jupiter-size transiting companion, but two of them are not in the mass domain of Jupiter-like planets. KOI-423b and KOI-522b are members of a growing population of known massive companions orbiting close to an F-type star. This population currently appears to be absent around G-type stars, possibly due to their rapid braking and the engulfment of their companions by tidal decay.
The space telescope CoRoT searches for transiting extrasolar planets by continuously monitoring the optical flux of thousands of stars in several fields of view. We report the discovery of CoRoT-10b, a giant planet on a highly eccentric orbit (e=0.53 +/- 0.04) revolving in 13.24 days around a faint (V=15.22) metal-rich K1V star. We use CoRoT photometry, radial velocity observations taken with the HARPS spectrograph, and UVES spectra of the parent star to derive the orbital, stellar and planetary parameters. We derive a radius of the planet of 0.97 +/- 0.07 R_Jup and a mass of 2.75 +/- 0.16 M_Jup. The bulk density, rho_pl=3.70 +/- 0.83 g/cm^3, is ~2.8 that of Jupiter. The core of CoRoT-10b could contain up to 240 M_Earth of heavy elements. Moving along its eccentric orbit, the planet experiences a 10.6-fold variation in insolation. Owing to the long circularisation time, tau_circ > 7 Gyr, a resonant perturber is not required to excite and maintain the high eccentricity of CoRoT-10b.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا