ترغب بنشر مسار تعليمي؟ اضغط هنا

We previously obtained constraints on the viewing geometries of 6 Fermi LAT pulsars using a multiwavelength approach (Seyffert et al., 2011). To obtain these constraints we compared the observed radio and $gamma$-ray light curves (LCs) for those 6 pu lsars by eye to LCs predicted by geometric models detailing the location and extent of emission regions in a pulsar magnetosphere. As a precursor to obtaining these constraints, a parameter study was conducted to reinforce our qualitative understanding of how the underlying model parameters effect the LCs produced by the geometric models. Extracting useful trends from the $gamma$-ray model LCs proved difficult though due to the increased complexity of the geometric models for the $gamma$-ray emission relative to those for the radio emission. In this paper we explore a second approach to investigating the interplay between the model parameters and the LC atlas. This approach does not attempt to understand how the set of model parameters influences the LC shapes directly, but rather, more fundamentally, investigates how the set of model parameters effects the sky maps from which the latter are extracted. This allows us to also recognise structure within the atlas itself, as we are now able to attribute certain features of the LCs to specific features on the sky map, meaning that we not only understand how the structure of single LCs come about, but also how their structure changes as we move through the geometric solution space.
162 - A. S. Seyffert 2014
Guillemot et al. recently reported the discovery of $gamma$-ray pulsations from the 22.7ms pulsar (pulsar A) in the famous double pulsar system J0737-3039A/B. The $gamma$-ray light curve (LC) of pulsar A has two peaks separated by approximately half a rotation, and these are non-coincident with the observed radio and X-ray peaks. This suggests that the $gamma$-ray emission originates in a part of the magnetosphere distinct from where the radio and X-ray radiation is generated. Thus far, three different methods have been applied to constrain the viewing geometry of pulsar A (its inclination and observer angles $alpha$ and $zeta$): geometric modelling of the radio and $gamma$-ray light curves, modelling of the position angle sweep in phase seen in the radio polarisation data, and independent studies of the time evolution of the radio pulse profile of pulsar A. These three independent, complementary methods have yielded consistent results: pulsar As rotation axis is likely perpendicular to the orbital plane of the binary system, and its magnetic axis close to lying in the orbital plane (making this pulsar an orthogonal rotator). The observer is furthermore observing emission close to the magnetic axis. Thus far, however, current models could not reproduce all the characteristics of the radio and $gamma$-ray light curves, specifically the large radio-to-$gamma$ phase lag. In this paper we discuss some preliminary modelling attempts to address this problem, and offer ideas on how the LC fits may be improved by adapting the standard geometric models in order to reproduce the profile positions more accurately.
Since the launch of the Large Area Telescope (LAT) on board the Fermi spacecraft in June 2008, the number of observed gamma-ray pulsars has increased dramatically. A large number of these are also observed at radio frequencies. Constraints on the vie wing geometries of 5 of 6 gamma-ray pulsars exhibiting single-peaked gamma-ray profiles were derived using high-quality radio polarization data (Weltevrede et al., 2010). We obtain independent constraints on the viewing geometries of 6 by using a geometric emission code to model the Fermi LAT and radio light curves (LCs). We find fits for the magnetic inclination and observer angles by searching the solution space by eye. Our results are generally consistent with those previously obtained (Weltevrede et al., 2010), although we do find small differences in some cases. We will indicate how the gamma-ray and radio pulse shapes as well as their relative phase lags lead to constraints in the solution space. Values for the flux correction factor corresponding to the fits are also derived (with errors).
The Fermi Large Area Telescope (LAT) has recently reported the detection of pulsed gamma-rays from 6 young pulsars (J0631+1036, J0659+1414, J0742-2822, J1420-6048, J1509-5850, and J1718-3825), all exhibiting single-peaked pulse profiles (Weltevrede e t al., 2010). High-quality radio polarization data are also available for 5 of these pulsars, allowing derivation of constraints on their viewing geometries. We obtain independent constraints on the viewing geometries of these pulsars by using a geometric pulsar emission code to model the Fermi LAT and radio light curves. We find fits for the magnetic inclination and observer angles alpha and zeta with typical errors of ~ 5deg. Our results are generally consistent with those obtained by Weltevrede et al. (2010), although we do find differences in some cases. Our model may lastly provide a framework to constrain the radio emission altitude.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا