ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconducting fluctuations (SF) in SmFeAsO$_{0.8}$F$_{0.2}$ (characterized by superconducting transition temperature $T_{c} simeq 52.3$ K) are investigated by means of isothermal high-resolution dc magnetization measurements. The diamagnetic respon se to magnetic fields up to 1 T above $T_{c}$ is similar to what previously reported for underdoped cuprate superconductors and it can be justified in terms of metastable superconducting islands at non-zero order parameter lacking of long-range coherence because of strong phase fluctuations. In the high-field regime ($H gtrsim 1.5$ T) scaling arguments predicted on the basis of the Ginzburg-Landau theory of conventional SF are found to be applicable, at variance with what observed in the low-field regime. This fact enlightens that two different phenomena are simultaneously present in the fluctuating diamagnetism, namely the phase SF of novel character and the conventional SF. High magnetic fields (1.5 T $lesssim H ll H_{c2}$) are found to suppress the former while leaving unaltered the latter one.
In this brief report an attempt is made for a mise-a-point of the subject of the phase fluctuations of the superconducting order parameter above Tc in cuprates, particularly as they appear in underdoped compounds. Measurements of torque magnetometry, Nernst effect and isothermal diamagnetic magnetization curves published in the last years are taken into consideration. Although by different experimental approaches and in different magnetic field ranges it can be stated that vortex-antivortex excitations and phase fluctuations among islands of local non-zero order parameter lacking of long range coherence do occur in a relevant temperature range above Tc, particularly in underdoped compounds. The role of the diamagnetic magnetization curves on approaching Tc from above in opening the field with clear signature is remarked, while enlightening comparison with other approaches appear possible.
$^{19}$F NMR measurements in SmFeAsO$_{1-x}$F$_x$, for $0.15leq xleq 0.2$, are presented. The nuclear spin-lattice relaxation rate $1/T_1$ increases upon cooling with a trend analogous to the one already observed in CeCu$_{5.2}$Au$_{0.8}$, a quasi tw o-dimensional heavy-fermion intermetallic compound with an antiferromagnetic ground-state. In particular, the behaviour of the relaxation rate either in SmFeAsO$_{1-x}$F$_x$ or in CeCu$_{5.2}$Au$_{0.8}$ can be described in the framework of the self-consistent renormalization theory for weakly itinerant electron systems. Remarkably, no effect of the superconducting transition on $^{19}$F $1/T_1$ is detected, a phenomenon which can hardly be explained within a single band model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا