ترغب بنشر مسار تعليمي؟ اضغط هنا

We have created a long-lived (~ 40 s) persistent current in a toroidal Bose-Einstein condensate held in an all-optical trap. A repulsive optical barrier creates a tunable weak link in the condensate circuit, which can affect the current around the lo op. Superflow stops abruptly at a barrier strength such that the local flow velocity exceeds a critical velocity. The measured critical velocity is consistent with dissipation due to the creation of vortex-antivortex pairs. This system is the first realization of an elementary closed-loop atom circuit.
185 - P. Clade , C. Ryu , A. Ramanathan 2008
We present experimental results on a Bose gas in a quasi-2D geometry near the Berezinskii, Kosterlitz and Thouless (BKT) transition temperature. By measuring the density profile, textit{in situ} and after time of flight, and the coherence length, we identify different states of the gas. In particular, we observe that the gas develops a bimodal distribution without long range order. In this state, the gas presents a longer coherence length than the thermal cloud; it is quasi-condensed but is not superfluid. Experimental evidence indicates that we observe the superfluid transition (BKT transition).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا