ترغب بنشر مسار تعليمي؟ اضغط هنا

Superflow in a toroidal Bose-Einstein condensate: an atom circuit with a tunable weak link

323   0   0.0 ( 0 )
 نشر من قبل Kevin Wright
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have created a long-lived (~ 40 s) persistent current in a toroidal Bose-Einstein condensate held in an all-optical trap. A repulsive optical barrier creates a tunable weak link in the condensate circuit, which can affect the current around the loop. Superflow stops abruptly at a barrier strength such that the local flow velocity exceeds a critical velocity. The measured critical velocity is consistent with dissipation due to the creation of vortex-antivortex pairs. This system is the first realization of an elementary closed-loop atom circuit.

قيم البحث

اقرأ أيضاً

The aim of this paper is to perform a numerical and analytical study of a rotating Bose Einstein condensate placed in a harmonic plus Gaussian trap, following the experiments of cite{bssd}. The rotational frequency $Omega$ has to stay below the trapp ing frequency of the harmonic potential and we find that the condensate has an annular shape containing a triangular vortex lattice. As $Omega$ approaches $omega$, the width of the condensate and the circulation inside the central hole get large. We are able to provide analytical estimates of the size of the condensate and the circulation both in the lowest Landau level limit and the Thomas-Fermi limit, providing an analysis that is consistent with experiment.
We study the collapse of an attractive atomic Bose-Einstein condensate prepared in the uniform potential of an optical-box trap. We characterise the critical point for collapse and the collapse dynamics, observing universal behaviour in agreement wit h theoretical expectations. Most importantly, we observe a clear experimental signature of the counterintuitive weak collapse, namely that making the system more unstable can result in a smaller particle loss. We experimentally determine the scaling laws that govern the weak-collapse atom loss, providing a benchmark for the general theories of nonlinear wave phenomena.
We consider the setup employed in a recent experiment (Ramanathan et al 2011 Phys. Rev. Lett. 106 130401) devoted to the study of the instability of the superfluid flow of a toroidal Bose-Einstein condensate in presence of a repulsive optical barrier . Using the Gross-Pitaevskii mean-field equation, we observe, consistently with what we found in Piazza et al (2009 Phys. Rev. A 80 021601), that the superflow with one unit of angular momentum becomes unstable at a critical strength of the barrier, and decays through the mechanism of phase slippage performed by pairs of vortex-antivortex lines annihilating. While this picture qualitatively agrees with the experimental findings, the measured critical barrier height is not very well reproduced by the Gross-Pitaevskii equation, indicating that thermal fluctuations can play an important role (Mathey et al 2012 arXiv:1207.0501). As an alternative explanation of the discrepancy, we consider the effect of the finite resolution of the imaging system. At the critical point, the superfluid velocity in the vicinity of the obstacle is always of the order of the sound speed in that region, $v_{rm barr}=c_{rm l}$. In particular, in the hydrodynamic regime (not reached in the above experiment), the critical point is determined by applying the Landau criterion inside the barrier region. On the other hand, the Feynman critical velocity $v_{rm f}$ is much lower than the observed critical velocity. We argue that this is a general feature of the Gross-Pitaevskii equation, where we have $v_{rm f}=epsilon c_{rm l}$ with $epsilon$ being a small parameter of the model. Given these observations, the question still remains open about the nature of the superfluid instability.
94 - Zhen Li , Le-Man Kuang 2019
We propose a scheme to control quantum coherence of a two-component Bose-Einstein condensate (BEC) by a single impurity atom immersed in the BEC. We show that the single impurity atom can act as a single atom valve (SAV) to control quantum coherence of the two-component BEC. It is demonstrated that the SAV can realize the on-demand control over quantum coherence at an arbitrary time. Specially, it is found that the SAV can also control higher-order quantum coherence of two-component BEC. We investigate the long-time evolution of quantum coherence of the two-component BEC. It is indicated that the single impurity atom can induce collapse and revival phenomenon of quantum coherence of the two-component BEC. Collapse-revival configurations of quantum coherence can be manipulated by the initial-state parameters of the impurity atom and the impurity-BEC interaction strengths.
We realized a quantum geometric charge pump for a Bose-Einstein condensate (BEC) in the lowest Bloch band of a novel bipartite magnetic lattice. Topological charge pumps in filled bands yield quantized pumping set by the global -- topological -- prop erties of the bands. In contrast, our geometric charge pump for a BEC occupying just a single crystal momentum state exhibits non-quantized charge pumping set by local -- geometrical -- properties of the band structure. Like topological charge pumps, for each pump cycle we observed an overall displacement (here, not quantized) and a temporal modulation of the atomic wavepackets position in each unit cell, i.e., the polarization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا