ترغب بنشر مسار تعليمي؟ اضغط هنا

215 - X. Y. Jin , A. Kamal , A. P. Sears 2014
We present a systematic study of the first excited-state population in a 3D transmon qubit mounted in a dilution refrigerator with a variable temperature. Using a modified version of the protocol developed by Geerlings et al. [1], we observe the exci ted-state population to be consistent with a Maxwell-Boltzmann distribution, i.e., a qubit in thermal equilibrium with the refrigerator, over the temperature range 35-150 mK. Below 35 mK, the excited-state population saturates to 0.1%, near the resolution of our measurement. We verified this result using a flux qubit with ten-times stronger coupling to its readout resonator. We conclude that these qubits have effective temperature T_{eff} = 35 mK. Assuming T_{eff} is due solely to hot quasiparticles, the inferred qubit lifetime is 108 us and in plausible agreement with the measured 80 us.
We study the photon shot noise dephasing of a superconducting transmon qubit in the strong-dispersive limit, due to the coupling of the qubit to its readout cavity. As each random arrival or departure of a photon is expected to completely dephase the qubit, we can control the rate at which the qubit experiences dephasing events by varying textit{in situ} the cavity mode population and decay rate. This allows us to verify a pure dephasing mechanism that matches theoretical predictions, and in fact explains the increased dephasing seen in recent transmon experiments as a function of cryostat temperature. We investigate photon dynamics in this limit and observe large increases in coherence times as the cavity is decoupled from the environment. Our experiments suggest that the intrinsic coherence of small Josephson junctions, when corrected with a single Hahn echo, is greater than several hundred microseconds.
Electron spins in solids are promising candidates for quantum memories for superconducting qubits because they can have long coherence times, large collective couplings, and many quantum bits can be encoded into the spin-waves of a single ensemble. W e demonstrate the coupling of electron spin ensembles to a superconducting transmission-line resonator at coupling strengths greatly exceeding the cavity decay rate and comparable to spin linewidth. We also use the enhanced coupling afforded by the small cross-section of the transmission line to perform broadband spectroscopy of ruby at millikelvin temperatures at low powers. In addition, we observe hyperfine structure in diamond P1 centers and time domain saturation-relaxation of the spins.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا