ترغب بنشر مسار تعليمي؟ اضغط هنا

74 - B. Rani 2015
The analysis of $gamma$-ray flux variability along with the parsec-scale jet kinematics suggests that the high-energy radiation in the BL Lac object S5 0716+714 has a significant correlation with the mm-VLBI core flux density and with the local orien tation of the inner jet flow. For the first time in any blazar, we report a significant correlation between the $gamma$-ray flux variations and the variations in the local orientation of the jet outflow (position angle). We find that the $gamma$-ray flux variations lead the 7~mm VLBI core flux variations by 82$pm$32~days, which suggests that the high-energy emission in S5 0716+714 is coming from a region located 3.8$pm$1.9~parsecs closer to the central black hole than the core seen on the mm-VLBI images. The results imply a strong physical and casual connection between $gamma$-ray emission and the inner jet morphology in the source.
114 - B. Rani 2015
We present a high-frequency very long baseline interferometry (VLBI) kinematical study of the BL Lac object S5 0716+714 over the time period of September 2008 to October 2010. The aim of the study is to investigate the relation of the jet kinematics to the observed broadband flux variability. We find significant non-radial motions in the jet outflow of the source. In the radial direction, the highest measured apparent speed is sim37 c, which is exceptionally high, especially for a BL Lac object. Patterns in the jet flow reveal a roughly stationary feature sim0.15 mas downstream of the core. The long-term fits to the component trajectories reveal acceleration in the sub-mas region of the jet. The measured brightness temperature, T_{B}, follows a continuous trend of decline with distance, T_B propto r_{jet}^{-(2.36pm0.41)}, which suggests a gradient in Doppler factor along the jet axis. Our analysis suggest that a moving disturbance (or a shock wave) from the base of the jet produces the high-energy (optical to gamma-ray) variations upstream of the 7 mm core, and then later causes an outburst in the core. Repetitive optical/gamma-ray flares and the curved trajectories of the associated components suggest that the shock front propagates along a bent trajectory or helical path. Sharper gamma-ray flares could be related to the passage of moving disturbances through the stationary feature. Our analysis suggests that the gamma-ray and radio emission regions have different Doppler factors.
90 - B. Rani 2014
Using millimeter-very long baseline interferometry (VLBI) observations of the BL Lac object S5 0716+714 from August 2008 to September 2013, we investigate variations in the core flux density and orientation of the sub-parsec scale jet i.e. position a ngle. The gamma-ray data obtained by the Fermi-LAT (Large Area Telescope) are used to investigate the high-energy flux variations over the same time period. For the first time in any blazar, we report a significant correlation between the gamma-ray flux variations and the position angle (PA) variations in the VLBI jet. The cross-correlation analysis also indicates a positive correlation such that the mm-VLBI core flux density variations are delayed with respect to the gamma-ray flux by 82$pm$32 days. This suggests that the high-energy emission is coming from a region located $geq$(3.8$pm$1.9) parsecs upstream of the mm-VLBI core (closer to the central black hole). These results imply that the observed inner jet morphology has a strong connection with the observed gamma-ray flares.
105 - A. P. Marscher 2013
The author is developing a numerical code with thousands of emission zones to simulate the time-dependent multi-waveband emission from blazars. The code is based on a model in which turbulent plasma flowing at a relativistic speed down a jet crosses a standing conical collimation shock that accelerates electrons to maximum energies in the 5-100 GeV range. This paper reports early results produced by the model. The simulated light curves and time profiles of the degree and position angle of polarization have a number of features in common with the observational data of blazars. Maps of the polarized intensity structure can be compared with those of blazars observed with very long baseline interferometry at short millimeter wavelengths.
We analyze total and polarized intensity images of the quasar 3C 454.3 obtained monthly with the VLBA at 43 GHz within the ongoing Boston U. monitoring program of gamma-ray blazars started in June 2007. The data are supplemented by VLBA observations performed during intense campaigns of 2 week duration when the quasar was observed 3 times per campaign. We find a strong increase of activity in the parsec-scale jet of the quasar during high gamma-ray states in December 2009, April 2010, and November 2010. We detect new superluminal knots, K09 and K10, associated with the autumn 2009 and 2010 outbursts, respectively, and compare their kinematic parameters. We analyze optical polarimetric behavior along with polarization parameters of the parsec-scale jet and outline similarities and differences in polarization properties across wavelengths. The results of the analysis support the conclusions that the optical polarized emission is produced in a region located in the vicinity of the mm-wave core of the jet of the quasar, and that the gamma-ray outbursts occur when a superluminal disturbance passes through the core.
Analysis of comprehensive monitoring of 34 gamma-ray bright quasars, BL Lac objects, and radio galaxies reveals a close connection between events in the millimeter-wave emission imaged with the VLBA at 43 GHz and flares at gamma-ray and lower frequen cies. Roughly 2/3 of the flares are coincident with the appearance of a new superluminal knot and/or a flare in the millimeter-wave core located parsecs from the central engine. This presents a theoretical challenge to explain how the gamma-ray flux can often be variable on intra-day time-scales. Possible answers to this include very narrow opening angles of the jet, small volume filling factors of the highest energy electrons, chaotic magnetic fields, and turbulent velocity fields relative to the mean jet flow.
We explore the variability and cross-frequency correlation of the flux density and polarization of the blazar OJ287, using imaging at 43 GHz with the Very Long Baseline Array, as well as optical and near-infrared polarimetry. The polarization and flu x density in both the optical waveband and the 43 GHz compact core increased by a small amount in late 2005, and increased significantly along with the near-IR polarization and flux density over the course of 10 days in early 2006. Furthermore, the values of the electric vector position angle (EVPA) at the three wavebands are similar. At 43 GHz, the EVPA of the blazar core is perpendicular to the flow of the jet, while the EVPAs of emerging superluminal knots are aligned parallel to the jet axis. The core polarization is that expected if shear aligns the magnetic field at the boundary between flows of disparate velocities within the jet. Using variations in flux density, percentage polarization, and EVPA, we model the inner jet as a spine-sheath system. The model jet contains a turbulent spine of half-width 1.2 degrees and maximum Lorentz factor of 16.5, a turbulent sheath with Lorentz factor of 5, and a boundary region of sheared field between the spine and sheath. Transverse shocks propagating along the fast, turbulent spine can explain the superluminal knots. The observed flux density and polarization variations are then compatible with changes in the direction of the inner jet caused by a temporary change in the position of the core if the spine contains wiggles owing to an instability. In addition, we can explain a stable offset of optical and near-IR percentage polarization by a steepening of spectral index with frequency, as supported by the data.
We present the results of extensive multi-waveband monitoring of the blazar 3C~279 between 1996 and 2007 at X-ray energies (2-10 keV), optical R band, and 14.5 GHz, as well as imaging with the Very Long Baseline Array (VLBA) at 43 GHz. In all bands t he power spectral density corresponds to red noise that can be fit by a single power law over the sampled time scales. Variations in flux at all three wavebands are significantly correlated. The time delay between high and low frequency bands changes substantially on time scales of years. A major multi-frequency flare in 2001 coincided with a swing of the jet toward a more southerly direction, and in general the X-ray flux is modulated by changes in the position angle of the jet near the core. The flux density in the core at 43 GHz--increases in which indicate the appearance of new superluminal knots--is significantly correlated with the X-ray flux. We decompose the X-ray and optical light curves into individual flares, finding that X-ray leads optical variations (XO) in 6 flares, the reverse occurs in 3 flares (OX), and there is essentially zero lag in 4 flares. Upon comparing theoretical expectations with the data, we conclude that (1) XO flares can be explained by gradual acceleration of radiating electrons to the highest energies; (2) OX flares can result from either light-travel delays of the seed photons (synchrotron self-Compton scattering) or gradients in maximum electron energy behind shock fronts; and (3) events with similar X-ray and optical radiative energy output originate well upstream of the 43 GHz core, while those in which the optical radiative output dominates occur at or downstream of the core.
160 - J. L. Gomez 2008
Very long baseline interferometric observations of the radio galaxy 3C 120 show a systematic presence of gradients in Faraday rotation and degree of polarization across and along the jet. These are revealed by the passage of multiple superluminal com ponents throughout the jet as they move out from the core in a sequence of 12 monthly polarimetric observations taken with the VLBA at 15, 22, and 43 GHz. The degree of polarization has an asymmetric profile in which the northern side of the jet is more highly polarized. The Faraday rotation measure is also stratified across the jet width, with larger values for the southern side. Superposed on this structure we find a localized region of high Faraday rotation measure (about 6000 rad/m^2) between approximately 3 and 4 mas from the core. This region of enhanced Faraday rotation may result from the interaction of the jet with the ambient medium, which may also explain the stratification in degree of polarization. The data are also consistent with a helical magnetic field in a two-fluid jet model, consisting of an inner emitting jet and a sheath of nonrelativistic electrons.
508 - J.-L. Gomez 2008
We present a sequence of 12 monthly polarimetric 15, 22, and 43 GHz VLBA observations of the radio galaxy 3C 120 revealing a systematic presence of gradients in Faraday rotation and degree of polarization across and along the jet. The degree of polar ization increases with distance from the core and toward the jet edges, and has an asymmetric profile in which the northern side of the jet is more highly polarized. The Faraday rotation measure is also stratified across the jet width, with larger values for the southern side. We find a localized region of high Faraday rotation measure superposed on this structure between approximately 3 and 4 mas from the core, with a peak of about 6000 rad/m^2. Interaction of the jet with the external medium or a cloud would explain the confined region of enhanced Faraday rotation, as well as the stratification in degree of polarization and the flaring of superluminal knots when crossing this region. The data are also consistent with a helical field in a two-fluid jet model, consisting of an inner, emitting jet and a sheath containing nonrelativistic electrons. However, this helical magnetic field model cannot by itself explain the localized region of enhanced Faraday rotation. The polarization electric vectors, predominantly perpendicular to the jet axis once corrected for Faraday rotation, require a dominant component parallel to the jet axis (in the frame of the emitting plasma) for the magnetic field in the emitting region.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا