ترغب بنشر مسار تعليمي؟ اضغط هنا

We examine the gas circulation near a gap opened by a giant planet in a protoplanetary disk. We show with high resolution 3D simulations that the gas flows into the gap at high altitude over the mid-plane, at a rate dependent on viscosity. We explain this observation with a simple conceptual model. From this model we derive an estimate of the amount of gas flowing into a gap opened by a planet with Hill radius comparable to the scale-height of a layered disk (i. e. a disk with viscous upper layer and inviscid midplane). Our estimate agrees with modern MRI simulations(Gressel et al., 2013). We conclude that gap opening in a layered disk can not slow down significantly the runaway gas accretion of Saturn to Jupiter-mass planets.
In the core-accretion model the nominal runaway gas-accretion phase brings most planets to multiple Jupiter masses. However, known giant planets are predominantly Jupiter-mass bodies. Obtaining longer timescales for gas accretion may require using re alistic equations of states, or accounting for the dynamics of the circumplanetary disk (CPD) in low-viscosity regime, or both. Here we explore the second way using global, three-dimensional isothermal hydrodynamical simulations with 8 levels of nested grids around the planet. In our simulations the vertical inflow from the circumstellar disk (CSD) to the CPD determines the shape of the CPD and its accretion rate. Even without prescribed viscosity Jupiters mass-doubling time is $sim 10^4$ years, assuming the planet at 5.2 AU and a Minimum Mass Solar Nebula. However, we show that this high accretion rate is due to resolution-dependent numerical viscosity. Furthermore, we consider the scenario of a layered CSD, viscous only in its surface layer, and an inviscid CPD. We identify two planet-accretion mechanisms that are independent of the viscosity in the CPD: (i) the polar inflow -- defined as a part of the vertical inflow with a centrifugal radius smaller than 2 Jupiter-radii and (ii) the torque exerted by the star on the CPD. In the limit of zero effective viscosity, these two mechanisms would produce an accretion rate 40 times smaller than in the simulation.
Recent observations of exoplanets by direct imaging, reveal that giant planets orbit at a few dozens to more than a hundred of AU from their central star. The question of the origin of these planets challenges the standard theories of planet formatio n. We propose a new way of obtaining such far planets, by outward migration of a pair of planets formed in the 10 AU region. Two giant planets in mean motion resonance in a common gap in the protoplanetary disk migrate outwards, if the inner one is significantly more massive than the outer one. Using hydrodynamical simulations, we show that their semi major axes can increase by almost one order of magnitude. In a flared disk, the pair of planets should reach an asymptotic radius. This mechanism could account for the presence of Fomalhaut b ; then, a second, more massive planet, should be orbiting Fomalhaut at about 75 AU.
94 - S. Marchi 2009
It is known that near-Earth objects (NEOs) during their orbital evolution may often undergo close approaches to the Sun. Indeed it is estimated that up to ~70% of them end their orbital evolution colliding with the Sun. Starting from the present orbi tal properties, it is possible to compute the most likely past evolution for every NEO, and to trace its distance from the Sun. We find that a large fraction of the population may have experienced in the past frequent close approaches, and thus, as a consequence, a considerable Sun-driven heating, not trivially correlated to the present orbits. The detailed dynamical behaviour, the rotational and the thermal properties of NEOs determine the exact amount of the resulting heating due to the Sun. In the present paper we discuss the general features of the process, providing estimates of the surface temperature reached by NEOs during their evolution. Moreover, we investigate the effects of this process on meteor-size bodies, analyzing possible differences with the NEO population. We also discuss some possible effects of the heating which can be observed through remote sensing by ground-based surveys or space missions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا