ترغب بنشر مسار تعليمي؟ اضغط هنا

We argue that the `changing look AGN recently reported by LaMassa et al. could be a luminous flare produced by the tidal disruption of a super-solar mass star passing just a few gravitational radii outside the event horizon of a $sim 10^8 M_{odot}$ n uclear black hole. This flare occurred in a massive, star forming galaxy at redshift $z=0.312$, robustly characterized thanks to repeated late-time photometric and spectroscopic observations. By taking difference-photometry of the well sampled multi-year SDSS Stripe-82 light-curve, we are able to probe the evolution of the nuclear spectrum over the course of the outburst. The tidal disruption event (TDE) interpretation is consistent with the very rapid rise and the decay time of the flare, which displays an evolution consistent with the well-known $t^{-5/3}$ behaviour (with a clear superimposed re-brightening flare). Our analysis places constraints on the physical properties of the TDE, such as the putative disrupted stars mass and orbital parameters, as well as the size and temperature of the emitting material. The properties of the broad and narrow emission lines observed in two epochs of SDSS spectra provide further constraints on the circum-nuclear structure, and could be indicative that the system hosted a moderate-luminosity AGN as recently as a few $10^4$ years ago, and is likely undergoing residual accretion as late as ten years after peak, as seen from the broad H$alpha$ emission line. We discuss the complex interplay between tidal disruption events and gas accretion episodes in galactic nuclei, highlighting the implications for future TDE searches and for estimates of their intrinsic rates.
134 - A. Merloni , M. Brusa 2013
We study the incidence of nuclear obscuration on a complete sample of 1310 AGN selected on the basis of their rest-frame 2-10 keV X-ray flux from the XMM-COSMOS survey, in the redshift range 0.3<z<3.5. We classify the AGN as obscured or un-obscured o n the basis of either the optical spectral properties and the overall SED or the shape of the X-ray spectrum. The two classifications agree in about 70% of the objects, and the remaining 30% can be further subdivided into two distinct classes: at low luminosities X-ray un-obscured AGN do not always show signs of broad lines or blue/UV continuum emission in their optical spectra, most likely due to galaxy dilution effects; at high luminosities broad line AGN may have absorbed X-ray spectra, which hints at an increased incidence of small-scale (sub-parsec) dust-free obscuration. We confirm that the fraction of obscured AGN is a decreasing function of the intrinsic X-ray luminosity, while the incidence of absorption shows significant evolution only for the most luminous AGN, which appear to be more commonly obscured at higher redshift. We find no significant difference between the mean stellar masses and star formation rates of obscured and un-obscured AGN hosts. We conclude that the physical state of the medium responsible for obscuration in AGN is complex, and mainly determined by the radiation environment (nuclear luminosity) in a small region enclosed within the gravitational sphere of influence of the central black hole, but is largely insensitive to the wider scale galactic conditions.
We explore the connection between black hole growth at the center of obscured quasars selected from the XMM-COSMOS survey and the physical properties of their host galaxies. We study a bolometric regime (<Lbol > 8 x 10^45 erg/s) where several theoret ical models invoke major galaxy mergers as the main fueling channel for black hole accretion. We confirm that obscured quasars mainly reside in massive galaxies (Mstar>10^10 Msun) and that the fraction of galaxies hosting such powerful quasars monotonically increases with the stellar mass. We stress the limitation of the use of rest-frame color-magnitude diagrams as a diagnostic tool for studying galaxy evolution and inferring the influence that AGN activity can have on such a process. We instead use the correlation between star-formation rate and stellar mass found for star-forming galaxies to discuss the physical properties of the hosts. We find that at z ~1, ~62% of Type-2 QSOs hosts are actively forming stars and that their rates are comparable to those measured for normal star-forming galaxies. The fraction of star-forming hosts increases with redshift: ~71% at z ~2, and 100% at z ~3. We also find that the the evolution from z ~1 to z ~3 of the specific star-formation rate of the Type-2 QSO hosts is in excellent agreement with that measured for star-forming galaxies. From the morphological analysis, we conclude that most of the objects are bulge-dominated galaxies, and that only a few of them exhibit signs of recent mergers or disks. Finally, bulge-dominated galaxies tend to host Type-2 QSOs with low Eddington ratios (lambda<0.1), while disk-dominated or merging galaxies have at their centers BHs accreting at high Eddington ratios (lambda > 0.1).
We present the results of the analysis of a sample of 17 low-luminosity (L_x < 1e42 erg/s), radio loud AGNs in massive galaxies. The sample is extracted from the SDSS database and it spans uniformly a wide range in optical [OIII] emission line and ra dio luminosity, but within a narrow redshift range (0.05 < z < 0.11) and a narrow super massive black hole mass range (~ 1e8 M_sun). For these sources we measured core X-ray emission with the Chandra X-ray telescope and radio emission with the VLA. Our main goal is to establish which emission component, if any, can be regarded as the most reliable accretion/jet-power estimator at these regimes. In order to do so, we studied the correlation between emission line properties, radio luminosity, radio spectral slopes and X-ray luminosity, as well as more complex multi-variate relations involving black hole mass, such as the fundamental plane of black hole activity. We find that 15 out of 17 sources of our sample can be classified as Low-Excitation Galaxies (LEG) and their observed properties suggest X-ray and radio emission to originate from the jet basis. We also find that X-ray emission does not appear to be affected by nuclear obscuration and can be used as a reliable jet-power estimator. More generally, X-ray, radio and optical emission appear to be related, although no tight correlation is found. In accordance with a number of recent studies of this class of objects these findings may be explained by a lack of cold (molecular) gaseous structures in the innermost region of these massive galaxies.
Using Chandra observations we have identified a sample of seven off-nuclear X-ray sources, in the redshift range z=0.072-0.283, located within optically bright galaxies in the COSMOS Survey. Using the multi-wavelength coverage available in the COSMOS field, we study the properties of the host galaxies of these ULXs. In detail, we derived their star formation rate from H_alpha measurements and their stellar masses using SED fitting techniques with the aim to compute the probability to have an off-nuclear source based on the host galaxy properties. We divide the host galaxies in different morphological classes using the available ACS/HST imaging. We find that our ULXs candidates are located in regions of the SFR versus M$_star$ plane where one or more off-nuclear detectable sources are expected. From a morphological analysis of the ACS imaging and the use of rest-frame colours, we find that our ULXs are hosted both in late and early type galaxies. Finally, we find that the fraction of galaxies hosting a ULX ranges from ~0.5% to ~0.2% going from L[0.5-2 keV]=3 x 10^39 erg s^-1 to L[0.5-2 keV]= 2 x 10^40 erg s^-1.
213 - A. Merloni 2009
(Abriged) We report on the measurement of the rest frame K-band luminosity and total stellar mass of the hosts of 89 broad line Active Galactic Nuclei detected in the zCOSMOS survey in the redshift range 1<z<2.2. The unprecedented multiwavelength cov erage of the survey field allows us to disentangle the emission of the host galaxy from that of the nuclear black hole in their Spectral Energy Distributions. We derive an estimate of black hole masses through the analysis of the broad Mg II emission lines observed in the medium-resolution spectra taken with VIMOS/VLT as part of the zCOSMOS project. We found that, as compared to the local value, the average black hole to host galaxy mass ratio appears to evolve positively with redshift, with a best fit evolution of the form (1+z)^{0.68 pm0.12 +0.6 -0.3}, where the large asymmetric systematic errors stem from the uncertainties in the choice of IMF, in the calibration of the virial relation used to estimate BH masses and in the mean QSO SED adopted. A thorough analysis of observational biases induced by intrinsic scatter in the scaling relations reinforces the conclusion that an evolution of the MBH-M* relation must ensue for actively growing black holes at early times: either its overall normalization, or its intrinsic scatter (or both) appear to increase with redshift. This can be interpreted as signature of either a more rapid growth of supermassive black holes at high redshift, a change of structural properties of AGN hosts at earlier times, or a significant mismatch between the typical growth times of nuclear black holes and host galaxies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا