ترغب بنشر مسار تعليمي؟ اضغط هنا

A tidal disruption flare in a massive galaxy? Implications for the fuelling mechanisms of nuclear black holes

122   0   0.0 ( 0 )
 نشر من قبل Andrea Merloni
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We argue that the `changing look AGN recently reported by LaMassa et al. could be a luminous flare produced by the tidal disruption of a super-solar mass star passing just a few gravitational radii outside the event horizon of a $sim 10^8 M_{odot}$ nuclear black hole. This flare occurred in a massive, star forming galaxy at redshift $z=0.312$, robustly characterized thanks to repeated late-time photometric and spectroscopic observations. By taking difference-photometry of the well sampled multi-year SDSS Stripe-82 light-curve, we are able to probe the evolution of the nuclear spectrum over the course of the outburst. The tidal disruption event (TDE) interpretation is consistent with the very rapid rise and the decay time of the flare, which displays an evolution consistent with the well-known $t^{-5/3}$ behaviour (with a clear superimposed re-brightening flare). Our analysis places constraints on the physical properties of the TDE, such as the putative disrupted stars mass and orbital parameters, as well as the size and temperature of the emitting material. The properties of the broad and narrow emission lines observed in two epochs of SDSS spectra provide further constraints on the circum-nuclear structure, and could be indicative that the system hosted a moderate-luminosity AGN as recently as a few $10^4$ years ago, and is likely undergoing residual accretion as late as ten years after peak, as seen from the broad H$alpha$ emission line. We discuss the complex interplay between tidal disruption events and gas accretion episodes in galactic nuclei, highlighting the implications for future TDE searches and for estimates of their intrinsic rates.



قيم البحث

اقرأ أيضاً

Binary stars that are on close orbits around massive black holes (MBH) such as Sgr A* in the center of the Milky Way are liable to undergo tidal disruption and eject a hypervelocity star. We study the interaction between such a MBH and circular binar ies for general binary orientations and penetration depths (i.e. binaries penetrate into the tidal radius around the BH). We show that for very deep penetrators, all binaries are disrupted when the binary rotation axis is roughly oriented toward the BH or it is in the opposite direction. The surviving chance becomes significant when the angle between the binary rotation axis and the BH direction is between pi /4 and 3 pi /4. The surviving chance is as high as $sim$ 20$%$ when the binary rotation axis is perpendicular to the BH direction. The angular dependence is opposite for very shallow penetrators where coplanar prograde orbits have the lowest surviving chance (or equivalently most vulnerable). We provide numerical fits to the disruption probability and energy gain at the the BH encounter as a function of the penetration depth. The latter can be simply rescaled in terms of binary masses, their initial separation and the binary-to-BH mass ratio to evaluate the ejection velocity of a binary members in various systems. We also investigate the disruption of coplanar, eccentric binaries by a MBH. It is shown that for highly eccentric binaries retrograde orbits have a significantly increased disruption probability and ejection velocities compared to the circular binaries.
We present the first simulations of the tidal disruption of stars with realistic structures and compositions by massive black holes (BHs). We build stars in the stellar evolution code MESA and simulate their disruption in the 3D adaptive-mesh hydrody namics code FLASH, using an extended Helmholtz equation of state and tracking 49 elements. We study the disruption of a 1$M_odot$ star and 3$M_odot$ star at zero-age main sequence (ZAMS), middle-age, and terminal-age main sequence (TAMS). The maximum BH mass for tidal disruption increases by a factor of $sim$2 from stellar radius changes due to MS evolution; this is equivalent to varying BH spin from 0 to 0.75. The shape of the mass fallback rate curves is different from the results for polytropes of Guillochon & Ramirez-Ruiz (2013). The peak timescale $t_{rm peak}$ increases with stellar age, while the peak fallback rate $dot M_{rm peak}$ decreases with age, and these effects diminish with increasing impact parameter $beta$. For a $beta=1$ disruption of a 1$M_odot$ star by a $10^6 M_odot$ BH, from ZAMS to TAMS, $t_{rm peak}$ increases from 30 to 54 days, while $dot M_{rm peak}$ decreases from 0.66 to 0.14 $M_odot$/yr. Compositional anomalies in nitrogen, helium, and carbon can occur before the peak timescale for disruptions of MS stars, which is in contrast to predictions from the frozen-in model. More massive stars can show stronger anomalies at earlier times, meaning that compositional constraints can be key in determining the mass of the disrupted star. The abundance anomalies predicted by these simulations provide a natural explanation for the spectral features and varying line strengths observed in tidal disruption events.
A likely tidal disruption of a star by the intermediate-mass black hole (IMBH) of a dwarf galaxy was recently identified in association with Abell 1795. Without deep spectroscopy for this very faint object, however, the possibility of a more massive background galaxy or even a disk-instability flare from a weak AGN could not be dismissed. We have now obtained 8 hours of Gemini spectroscopy which unambiguously demonstrate that the host galaxy is indeed an extremely low-mass $(M_astsim 3times 10^8; {rm M}_{odot})$ galaxy in Abell 1795, comparable to the least-massive galaxies determined to host IMBHs via other studies. We find that the spectrum is consistent with the X-ray flare being due to a tidal disruption event rather than an AGN flare. We also set improved limits on the black hole mass $({rm log}[M_{bullet}/{rm M}_{odot}] sim 5.3 - 5.7)$ and infer a 15-year X-ray variability of a factor of $> 10^4$. The confirmation of this galaxy-black hole system provides a glimpse into a population of galaxies that is otherwise difficult to study, due to the galaxies low masses and intrinsic faintness, but which may be important contributors to the tidal disruption rate.
Aims: A strong, hard X-ray flare was discovered (IGR J12580+0134) by INTEGRAL in 2011, and is associated to NGC 4845, a Seyfert 2 galaxy never detected at high-energy previously. To understand what happened we observed this event in the X-ray band on several occasions. Methods: Follow-up observations with XMM-Newton, Swift, and MAXI are presented together with the INTEGRAL data. Long and short term variability are analysed and the event wide band spectral shape modelled. Results: The spectrum of the source can be described with an absorbed (N_H ~ 7x10^22 cm^{-2}) power law (Gamma simeq 2.2), characteristic of an accreting source, plus a soft X-ray excess, likely to be of diffuse nature. The hard X-ray flux increased to maximum in a few weeks and decreased over a year, with the evolution expected for a tidal disruption event. The fast variations observed near the flare maximum allowed us to estimate the mass of the central black hole in NGC 4845 as ~ 3x10^5 Msun. The observed flare corresponds to the disruption of about 10% of an object with a mass of 14-30 Jupiter. The hard X-ray emission should come from a corona forming around the accretion flow close to the black hole. This is the first tidal event where such a corona has been observed.
The question of how supermassive black holes (SMBHs) grow over cosmic time is a major puzzle in high-energy astrophysics. One promising approach to this problem is via the study of tidal disruption flares (TDFs). These are transient events resulting from the disruption of stars by quiescent supermassive black holes at centers of galaxies. A meter-class X-ray observatory with a time resolution $sim$ a millisecond and a spectral resolution of a few eV at KeV energies would be revolutionary as it will facilitate high signal to noise spectral-timing studies of several cosmological TDFs. It would open a new era of astrophysics where SMBHs in TDFs at cosmic distances can be studied in similar detail as current studies of much nearer, stellar-mass black hole binaries. Using Athena X-ray observatory as an example, we highlight two specific aspects of spectral-timing analysis of TDFs. (1) Detection of X-ray quasi-periodic oscillations (QPOs) over a redshift range and using these signal frequencies to constrain the spin evolution of SMBHs, and (2) Time-resolved spectroscopy of outflows/winds to probe super-Eddington accretion. SMBH spin distributions at various redshifts will directly allow us to constrain their primary mode of growth as higher spins are predicted due to spin-up for prolonged accretion-mode growth, while lower spins are expected for growth via mergers due to angular momentum being deposited from random directions. A meter-class X-ray telescope will also be able to characterize relativistic TDFs, viz., SwJ1644+57-like events, out to a redshift greater than 8, i.e., it would facilitate detailed spectral-timing studies of TDFs by the youngest SMBHs in the Universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا