ترغب بنشر مسار تعليمي؟ اضغط هنا

A prerequisite for exploiting spins for quantum data storage and processing is long spin coherence times. Phosphorus dopants in silicon (Si:P) have been favoured as hosts for such spins because of measured electron spin coherence times (T2) longer th an any other electron spin in the solid state: 14 ms at 7 K. Heavier impurities such as bismuth in silicon (Si:Bi) could be used in conjunction with Si:P for quantum information proposals that require two separately addressable spin species. However, the question of whether the incorporation of the much less soluble Bi into Si leads to defect species that destroy coherence has not been addressed. Here we show that schemes involving Si:Bi are indeed feasible as the electron spin coherence time T2 exceeds 1 ms at 10 K. We polarized the Si:Bi electrons and hyperpolarized the I=9/2 nuclear spin of 209Bi, manipulating both with pulsed magnetic resonance. The larger nuclear spin means that a Si:Bi dopant provides a 20-dimensional Hilbert space rather than the four dimensional Hilbert space of an I=1/2 Si:P dopant.
Certain migratory birds can sense the earths magnetic field. The nature of this process is not yet properly understood. Here we offer a simple explanation according to which birds literally `see the local magnetic field: Our model relates the well-es tablished radical pair hypothesis to the phenomenon of Haidingers brush, a capacity to see the polarisation of light. This new picture explains recent surprising experimental data indicating long lifetimes for the radical pair. Moreover there is a clear evolutionary path toward this field sensing mechanism: it is an enhancement of a weak effect that may be present in many species.
We demonstrate that two remote qubits can be entangled through an optically active intermediary even if the coupling strengths between mediator and qubits are different. This is true for a broad class of interactions. We consider two contrasting scen arios. First, we extend the analysis of a previously studied gate operation which relies on pulsed, dynamical control of the optical state and which may be performed quickly. We show that remote spins can be entangled in this case even when the intermediary coupling strengths are unequal. Second, we propose an alternative adiabatic control procedure, and find that the system requirements become even less restrictive in this case. The scheme could be tested immediately in a range of systems including molecules, quantum dots, or defects in crystals.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا