ترغب بنشر مسار تعليمي؟ اضغط هنا

We depict the use of x-ray diffraction as a tool to directly probe the strain status in rolled-up semiconductor tubes. By employing continuum elasticity theory and a simple model we are able to simulate quantitatively the strain relaxation in perfect crystalline III-V semiconductor bi- and multilayers as well as in rolled-up layers with dislocations. The reduction in the local elastic energy is evaluated for each case. Limitations of the technique and theoretical model are discussed in detail.
We present direct evidence of enhanced Ga interdiffusion in InAs free-standing nanowires grown at moderate temperatures by molecular beam epitaxy on GaAs (111)B. Scanning electron microscopy together with X-ray diffraction measurements in coplanar an d grazing incidence geometries show that nominally grown InAs NWs are actually made of In$_{0.86}$Ga$_{0.14}$As. Unlike typical vapor-liquid-solid growth, these nanowires are formed by diffusion-induced growth combined with strong interdiffusion from substrate material. Based on the experimental results, a simple nanowire growth model accounting for the Ga interdiffusion is also presented. This growth model could be generally applicable to the molecular beam heteroepitaxy of III-V nanowires.
We investigate the effect of strain on the etching rate of two SiGe wet etchants, namely NH4OH:H2O2 and H2O2. For both etchants, we found that there is no appreciable strain selectivity, i.e. the etching rates do not depend on the actual strain state in the SiGe films. Instead, for the NH4OH:H2O2 solution, the rates are primarily determined by the Ge content. Finally, we show that both etchants are isotropic with no preferential etching of particular facets.
The magnetic structure and fluctuations of tetragonal GdRhIn5 were studied by resonant x-ray diffraction at the Gd LII and LIII edges, followed by a renormalization group analysis for this and other related Gd-based compounds, namely Gd2IrIn8 and GdI n3. These compounds are spin-only analogs of the isostructural Ce-based heavy-fermion superconductors. The ground state of GdRhIn5 shows a commensurate antiferromagnetic spin structure with propagation vector tau = (0,1/2, 1/2), corresponding to a parallel spin alignment along the a-direction and antiparallel alignment along b and c. A comparison between this magnetic structure and those of other members of the Rm(Co,Rh,Ir)n In3m+2n family (R =rare earth, n = 0, 1; m = 1, 2) indicates that, in general, tau is determined by a competition between first-(J1) and second-neighbor(J2) antiferromagnetic (AFM) interactions. While a large J1 /J2 ratio favors an antiparallel alignment along the three directions (the so-called G-AFM structure), a smaller ratio favors the magnetic structure of GdRhIn5 (C-AFM). In particular, it is inferred that the heavy-fermion superconductor CeRhIn5 is in a frontier between these two ground states, which may explain its non-collinear spiral magnetic structure. The critical behavior of GdRhIn5 close to the paramagnetic transition at TN = 39 K was also studied in detail. A typical second-order transition with the ordered magnetization critical parameter beta = 0.35 was experimentally found, and theoretically investigated by means of a renormalization group analysis.
X-ray diffuse scattering in the vicinity of a basis-forbidden (200) Bragg reflection was measured for a sample with uncapped self-assembled Ge islands epitaxially grown on Si(001). Our results provide evidence of atomically ordered SiGe domains in bo th islands and wetting layer. The modeling of x-ray profiles reveals the presence of antiphase boundaries separating the ordered domains in a limited region of the islands where the stoichiometry is close to Si0.5Ge0.5.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا