ترغب بنشر مسار تعليمي؟ اضغط هنا

Strain selectivity of SiGe wet chemical etchants

351   0   0.0 ( 0 )
 نشر من قبل Mathieu Stoffel
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the effect of strain on the etching rate of two SiGe wet etchants, namely NH4OH:H2O2 and H2O2. For both etchants, we found that there is no appreciable strain selectivity, i.e. the etching rates do not depend on the actual strain state in the SiGe films. Instead, for the NH4OH:H2O2 solution, the rates are primarily determined by the Ge content. Finally, we show that both etchants are isotropic with no preferential etching of particular facets.



قيم البحث

اقرأ أيضاً

We study strain relaxation and surface damage of GaN nanopillar arrays fabricated using inductively coupled plasma (ICP) etching and post etch wet chemical treatment. We controlled the shape and surface damage of such nanopillar structures through se lection of etching parameters. We compared different substrate temperatures and different chlorine-based etch chemistries to fabricate high quality GaN nanopillars. Room temperature photoluminescence and Raman scattering measurements were carried to study the presence of surface defect and strain relaxation on these nanostructures, respectively. We found that wet KOH etching can remove the side wall damages caused by dry plasma etching, leading to better quality of GaN nanopillars arrays. The Si material underneath the GaN pillars was removed by KOH wet etching, leaving behind a fine Si pillar to support the GaN structure. Substantial strain relaxations were observed in these structures from room temperature Raman spectroscopy measurements. Room temperature Photoluminescence spectroscopy shows the presence of whispering gallery modes from these the nano disks structures.
Wetting transitions have been predicted and observed to occur for various combinations of fluids and surfaces. This paper describes the origin of such transitions, for liquid films on solid surfaces, in terms of the gas-surface interaction potentials V(r), which depend on the specific adsorption system. The transitions of light inert gases and H2 molecules on alkali metal surfaces have been explored extensively and are relatively well understood in terms of the least attractive adsorption interactions in nature. Much less thoroughly investigated are wetting transitions of Hg, water, heavy inert gases and other molecular films. The basic idea is that nonwetting occurs, for energetic reasons, if the adsorption potentials well-depth D is smaller than, or comparable to, the well-depth of the adsorbate-adsorbate mutual interaction. At the wetting temperature, Tw, the transition to wetting occurs, for entropic reasons, when the liquids surface tension is sufficiently small that the free energy cost in forming a thick film is sufficiently compensated by the fluid- surface interaction energy. Guidelines useful for exploring wetting transitions of other systems are analyzed, in terms of generic criteria involving the simple model, which yields results in terms of gas-surface interaction parameters and thermodynamic properties of the bulk adsorbate.
72 - D. R. Hamann , (1 , 2 2004
The direct calculation of the elastic and piezoelectric tensors of solids can be accomplished by treating homogeneous strain within the framework of density-functional perturbation theory. By formulating the energy functional in reduced coordinates, we show that the strain perturbation enters only through metric tensors, and can be treated in a manner exactly paralleling the treatment of other perturbations. We present an analysis of the strain perturbation of the plane-wave pseudopotential functional, including the internal strain terms necessary to treat the atomic-relaxation contributions. Procedures for computationally verifying these expressions by comparison with numerical derivatives of ground-state calculations are described and illustrated.
Strain-engineering in SiGe nanostructures is fundamental for the design of optoelectronic devices at the nanoscale. Here we explore a new strategy, where SiGe structures are laterally confined by the Si substrate, to obtain high tensile strain avoidi ng the use of external stressors, and thus improving the scalability. Spectro-microscopy techniques, finite element method simulations and ab initio calculations are used to investigate the strain state of laterally confined Ge-rich SiGe nano-stripes. Strain information is obtained by tip enhanced Raman spectroscopy with an unprecedented lateral resolution of ~ 30 nm. The nano-stripes exhibit a large tensile hydrostatic strain component, which is maximum at the center of the top free surface, and becomes very small at the edges. The maximum lattice deformation is larger than the typical values of thermally relaxed Ge/Si(001) layers. This strain enhancement originates from a frustrated relaxation in the out-of-plane direction, resulting from the combination of the lateral confinement induced by the substrate side walls and the plastic relaxation of the misfit strain in the (001) plane at the SiGe/Si interface. The effect of this tensile lattice deformation at the stripe surface is probed by work function mapping, performed with a spatial resolution better than 100 nm using X-ray photoelectron emission microscopy. The nano-stripes exhibit a positive work function shift with respect to a bulk SiGe alloy, quantitatively confirmed by electronic structure calculations of tensile strained configurations. The present results have a potential impact on the design of optoelectronic devices at a nanometer length scale.
Thermoelectric properties of the chemically-doped intermetallic narrow-band semiconductor FeGa3 are reported. The parent compound shows semiconductor-like behavior with a small band gap (Eg = 0.2 eV), a carrier density of ~ 10(18) cm-3 and, a large n -type Seebeck coefficient (S ~ -400 mu V/K) at room temperature. Hall effect measurements indicate that chemical doping significantly increases the carrier density, resulting in a metallic state, while the Seebeck coefficient still remains fairly large (~ -150 mu V/K). The largest power factor (S2/{rho} = 62 mu W/m K2) and corresponding figure of merit (ZT = 0.013) at 390 K were observed for Fe0.99Co0.01(Ga0.997Ge0.003)3.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا