ترغب بنشر مسار تعليمي؟ اضغط هنا

We perform an electronic structure study for cerium oxide homogeneously-doped with cobalt impurities, focusing on the role played by oxygen vacancies and structural relaxation. By means of full-potential ab-initio methods, we explore the possibility of ferromagnetism as observed in recent experiments. Our results indicate that oxygen vacancies seem to be crucial for the appearance of a ferromagnetic alignment among Co impurities, obtaining an increasing tendency towards ferromagnetism with growing vacancy concentration. The estimated couplings cannot explain though, the experimentally observed room-temperature ferromagnetism. In this systematic study, we draw relevant conclusions regarding the location of the oxygen vacancies and the magnetic couplings involved. In particular, we find that oxygen vacancies tend to nucleate in the neighborhood of Co impurities and we get a remarkably strong ferromagnetic coupling between Co atoms and the Ce^{3+} neighboring ions. The calculated magnetic moments per cell depend on the degree of reduction which could explain the wide spread in the magnetization values observed in the experiments.
253 - J. Peralta-Ramos , , A. M. Llois 2008
In this contribution, we calculate the spin-dependent ballistic and coherent transport through epitaxial Fe/ZnSe (001) simple and double magnetic tunnel junctions with two different interface terminations: Zn-terminated and Se-terminated. The electro nic structure of the junctions is modeled by a second-nearest neighbors {it spd} tight-binding Hamiltonian parametrized to {it ab initio} calculated band structures, while the conductances and the tunneling magnetoresistance are calculated within Landauers formalism. The calculations are done at zero bias voltage and as a function of energy. We show and discuss the influence of the interface structure on the spin-dependent transport through simple and double tunnel junctions.
We calculate the conductance through double junctions of the type M(inf.)-Sn-Mm-Sn-M(inf.) and triple junctions of the type M(inf.)-Sn-Mm-Sn-Mm-Sn-M(inf.), where M(inf.) are semi-infinite metallic electrodes, Sn are n layers of semiconductor and Mm a re m layers of metal (the same as the electrodes), and compare the results with the conductance through simple junctions of the type M(inf.)-Sn-M(inf.). The junctions are bi-dimensional and their parts (electrodes and active region) are periodic in the direction perpendicular to the transport direction. To calculate the conductance we use the Greens Functions Landauer-B$ddot{u}$ttiker formalism. The electronic structure of the junction is modeled by a tight binding Hamiltonian. For a simple junction we find that the conductance decays exponentially with semiconductor thickness. For double and triple junctions, the conductance oscillates with the metal in-between thickness, and presents peaks for which the conductance is enhanced by 1-4 orders of magnitude. We find that when there is a conductance peak, the conductance is higher to that corresponding to a simple junction. The maximum ratio between the conductance of a double junction and the conductance of a simple junction is 146 %, while for a triple junction it is 323 %. These oscillations in the conductance are explained in terms of the energy spectrum of the junctions active region.
397 - J. Peralta-Ramos , , A. M. Llois 2008
We calculate the conductances and the tunneling magnetoresistance (TMR) of double magnetic tunnel junctions, taking as a model example junctions composed of Fe/ZnSe/Fe/ZnSe/Fe (001). The calculations are done as a function of the gate voltage applied to the in-between Fe layer slab. We find that the application of a gate voltage to the in-between Fe slab strongly affects the junctions TMR due to the tuning or untuning of conductance resonances mediated by quantum well states. The gate voltage allows a significant enhancement of the TMR, in a more controllable way than by changing the thickness of the in-between Fe slab. This effect may be useful in the design of future spintronic devices based on the TMR effect, requiring large and controllable TMR values.
134 - J. Peralta-Ramos , , A. M. Llois 2008
We calculate the tunneling magnetoresistance (TMR) of Fe$mid$ZnSe$mid$Fe$mid$ZnSe$mid$Fe (001) double magnetic tunnel junctions as a function of the in-between Fe layers thickness, and compare these results with those of Fe$mid$ZnSe$mid$Fe simple jun ctions. The electronic band structures are modeled by a parametrized tight-binding Hamiltonian fitted to {it ab initio} calculations, and the conductance is calculated within the Landauer formalism expressed in terms of Greens functions. We find that the conductances for each spin channel and the TMR strongly depend on the in-between Fe layers thickness, and that in some cases they are enhanced with respect to simple junctions, in qualitative agreement with recent experimental studies performed on similar systems. By using a 2D double junction as a simplified system, we show that the conductance enhancement can be explained in terms of the junctions energy spectrum. These results are relevant for spintronics because they demonstrate that the TMR in double junctions can be tuned and enhanced by varying the in-between metallic layers thickness.
355 - J. Peralta-Ramos , , A. M. Llois 2008
In this contribution, we calculate in a self-consistent way the ballistic transmission as a function of energy of one Fe/MgO (001) single-barrier and one double-barrier tunnel junction, relating them to their electronic structure. The transmission sp ectra of each kind of junction is calculated at different applied bias voltages. We focus on the impact that bias has on the resonant tunneling mediated by surface and quantum well states. The calculations are done in the coherent regime, using a combination of density functional theory and non-equilibrium Greens functions, as implemented in the {it ab initio} code {it SMEAGOL}. We conclude that, for both kinds of junction, the transmission functions depend on the applied bias voltage. In the single-barrier junction, transport mediated by resonant Fe minority surface states is rapidly destroyed by bias. In the double-barrier junction, the appearance of resonant tunneling through majority quantum well states is strongly affected by bias.
In this work, we calculate with ab initio methods the current-voltage characteristics for ideal single- and double-barrier Fe/MgO (001) magnetic tunnel junctions. The current is calculated in the phase-coherent limit by using the recently developed S MEAGOL code, combining the nonequilibrium Green function formalism with density-functional theory. In general we find that double-barrier junctions display a larger magnetoresistance, which decays with bias at a slower pace than their single-barrier counterparts. This is explained in terms of enhanced spin filtering from the middle Fe layer sandwiched in between the two MgO barriers. In addition, for double-barrier tunnel junctions, we find a well defined peak in the magnetoresistance at a voltage of V=0.1 V. This is the signature of resonant tunneling across a majority quantum well state. Our findings are discussed in relation to recent experiments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا