ترغب بنشر مسار تعليمي؟ اضغط هنا

280 - A. Luican , Guohong Li , A. Reina 2010
We report high magnetic field scanning tunneling microscopy and Landau level spectroscopy of twisted graphene layers grown by chemical vapor deposition. For twist angles exceeding ~3 degrees the low energy carriers exhibit Landau level spectra charac teristic of massless Dirac fermions. Above 20 degrees the layers effectively decouple and the electronic properties are indistinguishable from those in single layer graphene, while for smaller angles we observe a slow-down of the carrier velocity which is strongly angle dependent. At the smallest angles the spectra are dominated by twist induced Van Hove singularities and the Dirac fermions eventually become localized. An unexpected electron-hole asymmetry is observed which is substantially larger than the asymmetry in either single or untwisted bilayer graphene.
Electronic instabilities at the crossing of the Fermi energy with a Van Hove singularity in the density of states often lead to new phases of matter such as superconductivity, magnetism or density waves. However, in most materials this condition is d ifficult to control. In the case of single-layer graphene, the singularity is too far from the Fermi energy and hence difficult to reach with standard doping and gating techniques. Here we report the observation of low-energy Van Hove singularities in twisted graphene layers seen as two pronounced peaks in the density of states measured by scanning tunneling spectroscopy. We demonstrate that a rotation between stacked graphene layers can generate Van Hove singularities, which can be brought arbitrarily close to the Fermi energy by varying the angle of rotation. This opens intriguing prospects for Van Hove singularity engineering of electronic phases.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا