ترغب بنشر مسار تعليمي؟ اضغط هنا

The increasing sensitivities of pulsar timing arrays to ultra-low frequency (nHz) gravitational waves promises to achieve direct gravitational wave detection within the next 5-10 years. While there are many parallel efforts being made in the improvem ent of telescope sensitivity, the detection of stable millisecond pulsars and the improvement of the timing software, there are reasons to believe that the methods used to accurately determine the time-of-arrival (TOA) of pulses from radio pulsars can be improved upon. More specifically, the determination of the uncertainties on these TOAs, which strongly affect the ability to detect GWs through pulsar timing, may be unreliable. We propose two Bayesian methods for the generation of pulsar TOAs starting from pulsar search-mode data and pre-folded data. These methods are applied to simulated toy-model examples and in this initial work we focus on the issue of uncertainties in the folding period. The final results of our analysis are expressed in the form of posterior probability distributions on the signal parameters (including the TOA) from a single observation.
374 - P. Demorest 2009
Gravitational waves (GWs) are fluctuations in the fabric of spacetime predicted by Einsteins theory of general relativity. Using a collection of millisecond pulsars as high-precision clocks, the nanohertz band of this radiation is likely to be direct ly detected within the next decade. Nanohertz-frequency GWs are expected to be emitted by mergers of massive black hole binary systems, and potentially also by cosmic strings or superstrings formed in the early Universe. Direct detection of GWs will open a new window to the Universe, and provide astrophysical information inaccessible via electromagnetic observations. In this paper, we describe the potential sources of low-frequency GWs and the current status and key advances needed for the detection and exploitation of GWs through pulsar timing.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا