ﻻ يوجد ملخص باللغة العربية
The increasing sensitivities of pulsar timing arrays to ultra-low frequency (nHz) gravitational waves promises to achieve direct gravitational wave detection within the next 5-10 years. While there are many parallel efforts being made in the improvement of telescope sensitivity, the detection of stable millisecond pulsars and the improvement of the timing software, there are reasons to believe that the methods used to accurately determine the time-of-arrival (TOA) of pulses from radio pulsars can be improved upon. More specifically, the determination of the uncertainties on these TOAs, which strongly affect the ability to detect GWs through pulsar timing, may be unreliable. We propose two Bayesian methods for the generation of pulsar TOAs starting from pulsar search-mode data and pre-folded data. These methods are applied to simulated toy-model examples and in this initial work we focus on the issue of uncertainties in the folding period. The final results of our analysis are expressed in the form of posterior probability distributions on the signal parameters (including the TOA) from a single observation.
A large number of binary black holes (BBHs) with longer orbital periods are supposed to exist as progenitors of BBH mergers recently discovered with gravitational wave (GW) detectors. In our previous papers, we proposed to search for such BBHs in tri
We present a Bayesian parameter-estimation pipeline to measure the properties of inspiralling stellar-mass black hole binaries with LISA. Our strategy (i) is based on the coherent analysis of the three noise-orthogonal LISA data streams, (ii) employs
A new Bayesian software package for the analysis of pulsar timing data is presented in the form of TempoNest which allows for the robust determination of the non-linear pulsar timing solution simultaneously with a range of additional stochastic param
Using the latest numerical simulations of rotating stellar core collapse, we present a Bayesian framework to extract the physical information encoded in noisy gravitational wave signals. We fit Bayesian principal component regression models with know
Recent core-collapse supernova (CCSN) simulations have predicted several distinct features in gravitational-wave (GW) spectrograms, including a ramp-up signature due to the g-mode oscillation of the proto-neutron star (PNS) and an excess in the low-f