ترغب بنشر مسار تعليمي؟ اضغط هنا

We present revised near-infrared albedo fits of 2835 Main Belt asteroids observed by WISE/NEOWISE over the course of its fully cryogenic survey in 2010. These fits are derived from reflected-light near-infrared images taken simultaneously with therma l emission measurements, allowing for more accurate measurements of the near-infrared albedos than is possible for visible albedo measurements. As our sample requires reflected light measurements, it undersamples small, low albedo asteroids, as well as those with blue spectral slopes across the wavelengths investigated. We find that the Main Belt separates into three distinct groups of 6%, 16%, and 40% reflectance at 3.4 um. Conversely, the 4.6 um albedo distribution spans the full range of possible values with no clear grouping. Asteroid families show a narrow distribution of 3.4 um albedos within each family that map to one of the three observed groupings, with the (221) Eos family being the sole family associated with the 16% reflectance 3.4 um albedo group. We show that near-infrared albedos derived from simultaneous thermal emission and reflected light measurements are an important indicator of asteroid taxonomy and can identify interesting targets for spectroscopic followup.
On January 18-19 and June 28-29 of 2010, the Wide-field Infrared Survey Explorer (WISE) spacecraft imaged the Rosetta mission target, comet 67P/Churyumov-Gerasimenko. We present a preliminary analysis of the images, which provide a characterization o f the dust environment at heliocentric distances similar to those planned for the initial spacecraft encounter, but on the outbound leg of its orbit rather than the inbound. Broad-band photometry yields low levels of CO2 production at a comet heliocentric distance of 3.32 AU and no detectable production at 4.18 AU. We find that at these heliocentric distances, large dust grains with mean grain diameters on the order of a millimeter or greater dominate the coma and evolve to populate the tail. This is further supported by broad-band photometry centered on the nucleus, which yield an estimated differential dust particle size distribution with a power law relation that is considerably shallower than average. We set a 3-sigma upper limit constraint on the albedo of the large-grain dust at <= 0.12. Our best estimate of the nucleus radius (1.82 +/- 0.20 km) and albedo (0.04 +/- 0.01) are in agreement with measurements previously reported in the literature.
193 - T. Grav , A. K. Mainzer , J. Bauer 2011
We present the preliminary analysis of 1023 known asteroids in the Hilda region of the Solar System observed by the NEOWISE component of the Wide-field Infrared Survey Explorer (WISE). The sizes of the Hildas observed range from $sim 3 - 200$km. We f ind no size - albedo dependency as reported by other projects. The albedos of our sample are low, with a weighted mean value $p_V = 0.055pm0.018$, for all sizes sampled by the NEOWISE survey. We observed a significant fraction of the objects in the two known collisional families in the Hilda population. It is found that the Hilda collisional family is brighter, with weighted mean albedo of $p_V = 0.061pm0.011$, than the general population and dominated by D-type asteroids, while the Schubart collisional family is darker, with weighted mean albedo of ($p_V = 0.039pm0.013$). Using the reflected sunlight in the two shortest WISE bandpasses we are able to derive a method for taxonomic classification of $sim 10%$ of the Hildas detected in the NEOWISE survey. For the Hildas with diameter larger than 30km there are $67^{+7}_{-15}%$ D-type asteroids and $26^{+17}_{-5}%$ C-/P-type asteroids (with the majority of these being P-types).
We present the preliminary analysis of over 1739 known and 349 candidate Jovian Trojans observed by the NEOWISE component of the Wide-field Infrared Survey Explorer (WISE). With this survey the available diameters, albedos and beaming parameters for the Jovian Trojans have been increased by more than an order of magnitude compared to previous surveys. We find that the Jovian Trojan population is very homogenous for sizes larger than $sim10$km (close to the detection limit of WISE for these objects). The observed sample consists almost exclusively of low albedo objects, having a mean albedo value of $0.07pm0.03$. The beaming parameter was also derived for a large fraction of the observed sample, and it is also very homogenous with an observed mean value of $0.88pm0.13$. Preliminary debiasing of the survey shows our observed sample is consistent with the leading cloud containing more objects than the trailing cloud. We estimate the fraction to be N(leading)/N(trailing) $sim 1.4 pm 0.2$, lower than the $1.6 pm 0.1$ value derived by others.
We present initial results from the Wide-field Infrared Survey Explorer (WISE), a four-band all-sky thermal infrared survey that produces data well suited to measuring the physical properties of asteroids, and the NEOWISE enhancement to the WISE miss ion allowing for detailed study of Solar system objects. Using a NEATM thermal model fitting routine we compute diameters for over 100,000 Main Belt asteroids from their IR thermal flux, with errors better than 10%. We then incorporate literature values of visible measurements (in the form of the H absolute magnitude) to determine albedos. Using these data we investigate the albedo and diameter distributions of the Main Belt. As observed previously, we find a change in the average albedo when comparing the inner, middle, and outer portions of the Main Belt. We also confirm that the albedo distribution of each region is strongly bimodal. We observe groupings of objects with similar albedos in regions of the Main Belt associated with dynamical breakup families. Asteroid families typically show a characteristic albedo for all members, but there are notable exceptions to this. This paper is the first look at the Main Belt asteroids in the WISE data, and only represents the preliminary, observed raw size and albedo distributions for the populations considered. These distributions are subject to survey biases inherent to the NEOWISE dataset and cannot yet be interpreted as describing the true populations; the debiased size and albedo distributions will be the subject of the next paper in this series.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا