ترغب بنشر مسار تعليمي؟ اضغط هنا

101 - E. Zackrisson , A. K. Inoue 2013
Current data indicate that the reionization of the Universe was complete by redshift z~6-7, and while the sources responsible for this process have yet to be identified, star-forming galaxies are often considered the most likely candidates. However, the contribution from z>6 galaxies to cosmic reionization critically depends on the fraction of ionizing (Lyman continuum, LyC) photons escaping from these objects and into the intergalactic medium. At z<4, the escaping LyC flux can be measured directly, but the opacity of the neutral intergalactic medium precludes such measurements at higher redshifts. In a recent paper, we argue that since the LyC escape fraction regulates the contribution of nebular emission to the rest-frame optical/UV spectra of galaxies, the James Webb Space Telescope should be able to indirectly assess the LyC escape fraction for galaxies at z~6-9. JWST can, on the other hand, not constrain the fraction of LyC photons directly absorbed by dust, and this is where SPICA comes in. The dust continuum emission from gravitationally lensed LyC-leakers at z=6 may in principle be detectable with SPICA, thereby constraining the level of LyC extinction in these objects.
The fraction of ionizing photons (fesc) that escape from z>6 galaxies is an important parameter when assessing the role of these objects in the reionization of the Universe, but the opacity of the intergalactic medium precludes a direct measurement o f fesc for individual galaxies at these epochs. We argue, that since fesc regulates the impact of nebular emission on the spectra of galaxies, it should nonetheless be possible to indirectly probe fesc well into the reionization epoch. As a first step, we demonstrate that by combining measurements of the rest-frame UV slope beta with the equivalent width of the Hb emission line, galaxies with very high Lyman continuum escape fractions (fesc>0.5) should be identifiable up to z~9 through spectroscopy with the upcoming James Webb Space Telescope (JWST). By targeting strongly lensed galaxies behind low-redshift galaxy clusters, JWST spectra of sufficiently good quality can be obtained for M(1500)<-16.0 galaxies at z~7 and for M(1500)<-17.5 galaxies at z~9. Dust-obscured star formation may complicate the analysis, but supporting observations with ALMA or the planned SPICA mission may provide useful constraints on the dust properties of these galaxies.
During the course of our Lyman continuum imaging survey, we found that the spectroscopically confirmed Lya emitter LAE 221724+001716 at z = 3.10 in the SSA 22 field shows strong Lyman continuum emission (lambda_rest ~ 900 A) that escapes from this ga laxy. However, another recent spectroscopic survey revealed that the supposed Lyman continuum emission could arise from a foreground galaxy at z = 1.76 if the emission line newly detected from the galaxy at lambda_obs ~ 3360 A is Lya. If this is the case, as the angular separation between these two galaxies is very small (~ 0.6), LAE 221724+001716 at z = 3.10 could be amplified by the gravitational lensing caused by this intervening galaxy. Here we present a possible gravitational lens model for the system of LAE 221724+001716. First, we estimate the stellar mass of the intervening galaxy as Mstar ~ 3.5x10^9 Msun from its UV luminosity and ~ 3.0x10^7--2.4x10^9 Msun through the SED fitting. Then, we find that the gravitational magnification factor ranges from 1.01 to 1.16 using the so-called singular isothermal sphere model for strong lensing. While LAE 221724+001716 is the first system of an LAE-LAE lensing reported so far, the estimated magnification factor is not so significant because the stellar mass of the intervening galaxy is small.
Population III galaxies, made partly or exclusively of metal-free stars, are predicted to exist at high redshifts and may produce very strong Lya emission. A substantial fraction of these Lya photons are likely absorbed in the intergalactic medium at z>6, but recent simulations suggest that significant Lya emission may be detectable up to z~8.5, i.e. well into the reionization epoch. Here, we argue that high-redshift population III galaxies with strong Lya emission can be identified in Hubble Space Telescope imaging data because of their unusual colours. We quantify this effect in some of the filters used in Y-band dropout searches for galaxies at z~8 and find that population III galaxies with high Lya fluxes may exhibit much bluer J-H colours at z=8-10 than any normal type of galaxy at these redshifts. This colour signature can arise even if pop III stars account for as little as ~1e-3 to ~1e-2 of the stellar mass in these galaxies. Some of the anomalously blue objects reported in current Y-band dropout samples do in fact meet the colour criteria for Lya-emitting population III galaxies.
127 - E. Nakamura 2010
We present results of a survey of Lyman $alpha$ emitters (LAEs) at $z=6.5$ which is thought to be the final epoch of the cosmic reionization. In a $approx530$ arcmin$^2$ deep image of the SSA22 field taken through a narrowband filter NB912 installed in the Subaru/Suprime-Cam, we have found only 14 LAE candidates with $L_{rm Lyalpha}ga3times10^{42}$ erg s$^{-1}$. Even applying the same colour selection criteria, the number density of the LAE candidates is a factor of 3 smaller than that found at the same redshift in the Subaru Deep field (SDF). Assuming the number density in the SDF is a cosmic average, the probability to have a number density equal to or smaller than that found in the SSA22 field is only 7% if we consider fluctuation by the large-scale structure (i.e. cosmic variance) and Poisson error. Therefore, the SSA22 field may be a rare void at $z=6.5$. On the other hand, we have found that the number density of $i$-drop galaxies with $25.5<z<26.0$ in the SSA22 field agrees well with that in the SDF. If we consider a scenario that a larger neutral fraction of intergalactic hydrogen, $x_{rm HI}$, in the SSA22 field obscures a part of Ly$alpha$ emission, $x_{rm HI}$ in the SSA22 field should be about 2 times larger than that in the SDF. This can be translated into $x_{rm HI}<0.9$ at $z=6.5$ in the SSA22 field. A much larger survey area than previous ones is required to overcome a large fluctuation reported here and to obtain a robust constraint on $x_{rm HI}$ at the end of the reionization from LAEs.
The disk around AB Aur was imaged and resolved at 24.6,$mu$m using the Cooled Mid-Infrared Camera and Spectrometer on the 8.2m Subaru Telescope. The gaussian full-width at half-maximum of the source size is estimated to be 90 $pm$ 6 AU, indicating th at the disk extends further out at 24.6,$mu$m than at shorter wavelengths. In order to interpret the extended 24.6,$mu$m image, we consider a disk with a reduced surface density within a boundary radius $R_c$, which is motivated by radio observations that suggest a reduced inner region within about 100 AU from the star. Introducing the surface density reduction factor $f_c$ for the inner disk, we determine that the best match with the observed radial intensity profile at 24.6,$mu$m is achieved with $R_c$=88 AU and $f_c$=0.01. We suggest that the extended emission at 24.6,$mu$m is due to the enhanced emission from a wall-like structure at the boundary radius (the inner edge of the outer disk), which is caused by a jump in the surface density at $R_c$. Such reduced inner disk and geometrically thick outer disk structure can also explain the more point-like nature at shorter wavelengths. We also note that this disk geometry is qualitatively similar to a pre-transitional disk, suggesting that the AB Aur disk is in a pre-transitional disk phase.
Knowing the amount of ionizing photons from young star-forming galaxies is of particular importance to understanding the reionization process. Here we report initial results of Subaru/Suprime-Cam deep imaging observation of the SSA22 proto-cluster re gion at z=3.09, using a special narrow-band filter to optimally trace Lyman continuum (LyC) from galaxies at z~3. The unique wide field-of-view of Suprime-Cam enabled us to search for ionizing photons from 198 galaxies (73 Lyman break galaxies (LBGs) and 125 Ly-alpha emitters (LAEs)) with spectroscopically measured redshifts z~3.1. We detected LyC from 7 LBGs, as well as from 10 LAE candidates. Some of the detected galaxies show significant spatial offsets of LyC from non-ionizing UV emission. For some LBGs the observed non-ionizing UV to LyC flux density ratios are smaller than values expected from population synthesis models with a standard Salpeter initial mass function (IMF) with moderate dust attenuation (which is suggested from the observed UV slopes), even if we assume very transparent IGM along the sightlines of these objects. This implies an intrinsically bluer spectral energy distribution, e.g, that produced by a top-heavy IMF, for these LBGs. The observed flux desity ratios of non-ionizing UV to LyC of 7 detected LBGs range from 2.4 to 23.8 and the median is 6.6. The observed flux density ratios of the detected LAEs are even smaller than LBGs, if they are truly at z~3.1. We find that the median value of the flux density ratio for the deteced LBGs suggest that their escape fractions is likely to be higher than 4%, if the LyC escape is isotropic. The results imply that some of the LBGs in the proto-cluster at z~3 have the escape fraction significantly higher than that of galaxies (in a general field) at z~1 studied previously.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا