ترغب بنشر مسار تعليمي؟ اضغط هنا

Predicting the final state of turbulent plasma relaxation is an important challenge, both in astrophysical plasmas such as the Suns corona and in controlled thermonuclear fusion. Recent numerical simulations of plasma relaxation with braided magnetic fields identified the possibility of a novel constraint, arising from the topological degree of the magnetic field-line mapping. This constraint implies that the final relaxed state is drastically different for an initial configuration with topological degree 1 (which allows a Taylor relaxation) and one with degree 2 (which does not reach a Taylor state). Here we test this transition in numerical resistive-magnetohydrodynamic simulations, by embedding a braided magnetic field in a linear force-free background. Varying the background force-free field parameter generates a sequence of initial conditions with a transition between topological degree 1 and 2. For degree 1, the relaxation produces a single twisted flux tube, while for degree 2 we obtain two flux tubes. For predicting the exact point of transition, it is not the topological degree of the whole domain that is relevant, but only that of the turbulent region.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا