ﻻ يوجد ملخص باللغة العربية
Predicting the final state of turbulent plasma relaxation is an important challenge, both in astrophysical plasmas such as the Suns corona and in controlled thermonuclear fusion. Recent numerical simulations of plasma relaxation with braided magnetic fields identified the possibility of a novel constraint, arising from the topological degree of the magnetic field-line mapping. This constraint implies that the final relaxed state is drastically different for an initial configuration with topological degree 1 (which allows a Taylor relaxation) and one with degree 2 (which does not reach a Taylor state). Here we test this transition in numerical resistive-magnetohydrodynamic simulations, by embedding a braided magnetic field in a linear force-free background. Varying the background force-free field parameter generates a sequence of initial conditions with a transition between topological degree 1 and 2. For degree 1, the relaxation produces a single twisted flux tube, while for degree 2 we obtain two flux tubes. For predicting the exact point of transition, it is not the topological degree of the whole domain that is relevant, but only that of the turbulent region.
The current understanding of MHD turbulence envisions turbulent eddies which are anisotropic in all three directions. In the plane perpendicular to the local mean magnetic field, this implies that such eddies become current-sheet-like structures at s
We examine the dynamics of magnetic flux tubes containing non-trivial field line braiding (or linkage), using mathematical and computational modelling, in the context of testable predictions for the laboratory and their significance for solar coronal
We introduce a topological flux function to quantify the topology of magnetic braids: non-zero, line-tied magnetic fields whose field lines all connect between two boundaries. This scalar function is an ideal invariant defined on a cross-section of t
A topological flux function is introduced to quantify the topology of magnetic braids: non-zero line-tied magnetic fields whose field lines all connect between two boundaries. This scalar function is an ideal invariant defined on a cross-section of t
Type-I Edge Localised Modes (ELMs) have been mitigated in MAST through the application of n = 3, 4 and 6 resonant magnetic perturbations (RMPs). For each toroidal mode number of the non-axisymmetric applied fields, the frequency of the ELMs has been