ترغب بنشر مسار تعليمي؟ اضغط هنا

Physical role of topological constraints in localised magnetic relaxation

120   0   0.0 ( 0 )
 نشر من قبل Anthony Yeates
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Predicting the final state of turbulent plasma relaxation is an important challenge, both in astrophysical plasmas such as the Suns corona and in controlled thermonuclear fusion. Recent numerical simulations of plasma relaxation with braided magnetic fields identified the possibility of a novel constraint, arising from the topological degree of the magnetic field-line mapping. This constraint implies that the final relaxed state is drastically different for an initial configuration with topological degree 1 (which allows a Taylor relaxation) and one with degree 2 (which does not reach a Taylor state). Here we test this transition in numerical resistive-magnetohydrodynamic simulations, by embedding a braided magnetic field in a linear force-free background. Varying the background force-free field parameter generates a sequence of initial conditions with a transition between topological degree 1 and 2. For degree 1, the relaxation produces a single twisted flux tube, while for degree 2 we obtain two flux tubes. For predicting the exact point of transition, it is not the topological degree of the whole domain that is relevant, but only that of the turbulent region.



قيم البحث

اقرأ أيضاً

The current understanding of MHD turbulence envisions turbulent eddies which are anisotropic in all three directions. In the plane perpendicular to the local mean magnetic field, this implies that such eddies become current-sheet-like structures at s mall scales. We analyze the role of magnetic reconnection in these structures and conclude that reconnection becomes important at a scale $lambdasim L S_L^{-4/7}$, where $S_L$ is the outer-scale ($L$) Lundquist number and $lambda$ is the smallest of the field-perpendicular eddy dimensions. This scale is larger than the scale set by the resistive diffusion of eddies, therefore implying a fundamentally different route to energy dissipation than that predicted by the Kolmogorov-like phenomenology. In particular, our analysis predicts the existence of the sub-inertial, reconnection interval of MHD turbulence, with the Fourier energy spectrum $E(k_perp)propto k_perp^{-5/2}$, where $k_perp$ is the wave number perpendicular to the local mean magnetic field. The same calculation is also performed for high (perpendicular) magnetic Prandtl number plasmas ($Pm$), where the reconnection scale is found to be $lambda/Lsim S_L^{-4/7}Pm^{-2/7}$.
We examine the dynamics of magnetic flux tubes containing non-trivial field line braiding (or linkage), using mathematical and computational modelling, in the context of testable predictions for the laboratory and their significance for solar coronal heating. We investigate the existence of braided force-free equilibria, and demonstrate that for a field anchored at perfectly-conducting plates, these equilibria exist and contain current sheets whose thickness scales inversely with the braid complexity - as measured for example by the topological entropy. By contrast, for a periodic domain braided exact equilibria typically do not exist, while approximate equilibria contain thin current sheets. In the presence of resistivity, reconnection is triggered at the current sheets and a turbulent relaxation ensues. We finish by discussing the properties of the turbulent relaxation and the existence of constraints that may mean that the final state is not the linear force-free field predicted by Taylors hypothesis.
121 - A. R. Yeates , G. Hornig 2012
We introduce a topological flux function to quantify the topology of magnetic braids: non-zero, line-tied magnetic fields whose field lines all connect between two boundaries. This scalar function is an ideal invariant defined on a cross-section of t he magnetic field, and measures the average poloidal magnetic flux around any given field line, or the average pairwise crossing number between a given field line and all others. Moreover, its integral over the cross-section yields the relative magnetic helicity. Using the fact that the flux function is also an action in the Hamiltonian formulation of the field line equations, we prove that it uniquely characterizes the field line mapping and hence the magnetic topology.
131 - A. R. Yeates , G. Hornig 2013
A topological flux function is introduced to quantify the topology of magnetic braids: non-zero line-tied magnetic fields whose field lines all connect between two boundaries. This scalar function is an ideal invariant defined on a cross-section of t he magnetic field, whose integral over the cross-section yields the relative magnetic helicity. Recognising that the topological flux function is an action in the Hamiltonian formulation of the field line equations, a simple formula for its differential is obtained. We use this to prove that the topological flux function uniquely characterises the field line mapping and hence the magnetic topology. A simple example is presented.
Type-I Edge Localised Modes (ELMs) have been mitigated in MAST through the application of n = 3, 4 and 6 resonant magnetic perturbations (RMPs). For each toroidal mode number of the non-axisymmetric applied fields, the frequency of the ELMs has been increased significantly, and the peak heat flux on the divertor plates reduced commensurately. This increase in ELM frequency occurs despite a significant drop in the edge pressure gradient, which would be expected to stabilise the peeling-ballooning modes thought to be responsible for type-I ELMs. Various mechanisms which could cause a destabilisation of the peeling-ballooning modes are presented, including pedestal widening, plasma rotation braking, three dimensional corrugation of the plasma boundary and the existence of radially extended lobe structures near to the X-point. This leads to a model aimed at resolving the apparent dichotomy of ELM control, that is to say ELM suppression occurring due to the pedestal pressure reduction below the peeling-ballooning stability boundary, whilst the reduction in pressure can also lead to ELM mitigation, which is ostensibly a destabilisation of peeling-ballooning modes. In the case of ELM mitigation, the pedestal broadening, 3d corrugation or lobes near the X-point degrade ballooning stability so much that the pedestal recovers rapidly to cross the new stability boundary at lower pressure more frequently, whilst in the case of suppression, the plasma parameters are such that the particle transport reduces the edge pressure below the stability boundary which is only mildly affected by negligible rotation braking, small edge corrugation or short, broad lobe structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا