ترغب بنشر مسار تعليمي؟ اضغط هنا

In the exchange approximation, an exact solution is obtained for the sublattice magnetizations evolution in a two-sublattice ferrimagnet. Nonlinear regimes of spin dynamics are found that include both the longitudinal and precessional evolution of th e sublattice magnetizations, with the account taken of the exchange relaxation. In particular, those regimes describe the spin switching observed in the GdFeCo alloy under the influence of a femtosecond laser pulse.
114 - E. A. Ivanov , B. M. Zupnik 2012
Motivated by a recent progress in studying the duality-symmetric models of nonlinear electrodynamics, we revert to the auxiliary tensorial (bispinor) field formulation of the O(2) duality proposed by us in arXiv:hep-th/0110074, arXiv:hep-th/0303192. In this approach, the entire information about the given duality-symmetric system is encoded in the O(2) invariant interaction Lagrangian which is a function of the auxiliary fields V_{alphabeta}, bar V_{dot alphadot beta}. We extend this setting to duality-symmetric systems with higher derivatives and show that the recently employed nonlinear twisted self-duality constraints amount to the equations of motion for the auxiliary tensorial fields in our approach. Some other related issues are briefly discussed and a few instructive examples are explicitly worked out.
We study the superconducting proximity effect in a quantum wire with broken time-reversal (TR) symmetry connected to a conventional superconductor. We consider the situation of a strong TR-symmetry breaking, so that Cooper pairs entering the wire fro m the superconductor are immediately destroyed. Nevertheless, some traces of the proximity effect survive: for example, the local electronic density of states (LDOS) is influenced by the proximity to the superconductor, provided that localization effects are taken into account. With the help of the supersymmetric sigma model, we calculate the average LDOS in such a system. The LDOS in the wire is strongly modified close to the interface with the superconductor at energies near the Fermi level. The relevant distances from the interface are of the order of the localization length, and the size of the energy window around the Fermi level is of the order of the mean level spacing at the localization length. Remarkably, the sign of the effect is sensitive to the way the TR symmetry is broken: In the spin-symmetric case (orbital magnetic field), the LDOS is depleted near the Fermi energy, whereas for the broken spin symmetry (magnetic impurities), the LDOS at the Fermi energy is enhanced.
105 - S. A. Fedoruk , E. A. Ivanov , 2012
We derive and discuss, at both the classical and the quantum levels, generalized N = 2 supersymmetric quantum mechanical sigma models describing the motion over an arbitrary real or an arbitrary complex manifold with extra torsions. We analyze the re levant vacuum states to make explicit the fact that their number is not affected by adding the torsion terms.
We analyzed the ground state of the array of magnetic particles (magnetic dots) which form a two-dimensional triangular lattice, and magnetic moment of which is perpendicular to the plane of the lattice, in the presence of external magnetic field. In the small fields long range dipole-dipole interaction leads to the specific antiferromagnetic order, where two out of six nearest neighbors of the particle have the same direction of magnetization moment and four - the opposite one. It is shown that magnetization process in such array of particles as opposed to the rectangular lattices results from the formation of the magnetized topological defects (dislocations) in the shape of the domain walls.
We construct a manifestly N=3 supersymmetric low-energy effective action of N=3 super Yang-Mills theory. The effective action is written in the N=3 harmonic superspace and respects the full N=3 superconformal symmetry. On mass shell this action is re sponsible for the four-derivative terms in the N=4 SYM effective action, such as F^4/X^4 and its supersymmetric completions, while off shell it involves also higher-derivative terms. For constant Maxwell and scalar fields its bosonic part coincides, up to the F^6/X^8 order, with the bosonic part of the D3 brane action in the AdS_5 x S^5 background. We also argue that in the sector of scalar fields it involves the correctly normalized Wess-Zumino term with the implicit SU(3) symmetry.
A quantum particle can be localized in a disordered potential, the effect known as Anderson localization. In such a system, correlations of wave functions at very close energies may be described, due to Mott, in terms of a hybridization of localized states. We revisit this hybridization description and show that it may be used to obtain quantitatively exact expressions for some asymptotic features of correlation functions, if the tails of the wave functions and the hybridization matrix elements are assumed to have log-normal distributions typical for localization effects. Specifically, we consider three types of one-dimensional systems: a strictly one-dimensional wire and two quasi-one-dimensional wires with unitary and orthogonal symmetries. In each of these models, we consider two types of correlation functions: the correlations of the density of states at close energies and the dynamic response function at low frequencies. For each of those correlation functions, within our method, we calculate three asymptotic features: the behavior at the logarithmically large Mott length scale, the low-frequency limit at length scale between the localization length and the Mott length scale, and the leading correction in frequency to this limit. In the several cases, where exact results are available, our method reproduces them within the precision of the orders in frequency considered.
78 - V. Hinkov , B. Keimer , A. Ivanov 2010
We present a comprehensive inelastic neutron scattering study of the magnetic excitations in twin-free YBa(2)Cu(3)O(6.6) (Tc=61 K) for 5 K < T < 290 K. Taking full account of the instrumental resolution, we derive analytical model functions for the m agnetic susceptibility chi(Q,omega) at T = 5 K and 70 K in absolute units. Our models are supported by previous results on similar samples and are valid at least up to excitation energies of omega = 100 meV. The detailed knowledge of chi(Q,omega) permits quantitative comparison to the results of complementary techniques including angle-resolved photoemission spectroscopy (ARPES), as demonstrated in Dahm et al., Nature Phys. 5, 217, (2009). Based on accurate modeling of the effect of the resolution function on the detected intensity, we determine important intrinsic features of the spin excitation spectrum, with a focus on the differences above and below Tc. In particular, at T = 70 K the spectrum exhibits a pronounced twofold in-plane anisotropy at low energies, which evolves towards fourfold rotational symmetry at high energies, and the relation dispersion is Y-shaped. At T = 5 K, on the other hand, the spectrum develops a continuous, downward-dispersing resonant mode with weaker in-plane anisotropy. We understand this topology change as arising from the competition between superconductivity and the same electronic liquid-crystal state as observed in YBa(2)Cu(3)O(6.45). We discuss our data in the context of different theoretical scenarios suggested to explain this state.
Here we consider micron-sized samples with any axisymmetric body shape and made with a canted antiferromagnet, like hematite or iron borate. We find that its ground state can be a magnetic vortex with a topologically non-trivial distribution of the s ublattice magnetization $vec{l}$ and planar coreless vortex-like structure for the net magnetization $vec{M}$. For antiferromagnetic samples in the vortex state, in addition to low-frequency modes, we find high-frequency modes with frequencies over the range of hundreds of gigahertz, including a mode localized in a region of radius $sim$ 30--40 nm near the vortex core.
We present a novel system for the simulation of quantum phase transitions of collective internal qubit and phononic states with a linear crystal of trapped ions. The laser-ion interaction creates an energy gap in the excitation spectrum, which induce s an effective phonon-phonon repulsion and a Jaynes-Cummings-Hubbard interaction. This system shows features equivalent to phase transitions of polaritons in coupled cavity arrays. Trapped ions allow for easy tunabilty of the hopping frequency by adjusting the axial trapping frequency, and the phonon-phonon repulsion via the laser detuning and intensity. We propose an experimental protocol to access all observables of the system, which allows one to obtain signatures of the quantum phase transitions even with a small number of ions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا