ترغب بنشر مسار تعليمي؟ اضغط هنا

Valley polarization in graphene breaks inversion symmetry and therefore leads to second-harmonic generation. We present a complete theory of this effect within a single-particle approximation. It is shown that this may be a sensitive tool to measure the valley polarization created, e.g., by polarized light and, thus, can be used for a development of ultrafast valleytronics in graphene.
We study the charge-density dynamics within the two-dimensional extended Hubbard model in the presence of long-range Coulomb interaction across the metal-insulator transition point. To take into account strong correlations we start from self-consiste nt extended dynamical mean-field theory and include non-local dynamical vertex corrections through a ladder approximation to the polarization operator. This is necessary to fulfill charge conservation and to describe plasmons in the correlated state. The calculated plasmon spectra are qualitatively different from those in the random-phase approximation: they exhibit a spectral density transfer and a renormalized dispersion with enhanced deviation from the canonical $sqrt{q}$-behavior. Both features are reminiscent of interaction induced changes found in single-electron spectra of strongly correlated systems.
Resonant scatterers such as hydrogen adatoms can strongly enhance the low energy density of states in graphene. Here, we study the impact of these impurities on the electronic screening. We find a two-faced behavior: Kubo formula calculations reveal an increased dielectric function $varepsilon$ upon creation of midgap states but no metallic divergence of the static $varepsilon$ at small momentum transfer $qto 0$. This bad metal behavior manifests also in the dynamic polarization function and can be directly measured by means of electron energy loss spectroscopy. A new length scale $l_c$ beyond which screening is suppressed emerges, which we identify with the Anderson localization length.
We consider the theory of Kondo effect and Fano factor energy dependence for magnetic impurity (Co) on graphene. We have performed a first principles calculation and find that the two dimensional $E_1$ representation made of $d_{xz},d_{yz}$ orbitals is likely to be responsible for the hybridization and ultimately Kondo screening for cobalt on graphene. There are few high symmetry sites where magnetic impurity atom can be adsorbed. For the case of Co atom in the middle of hexagon of carbon lattice we find anomalously large Fano $q$-factor, $qapprox 80$ and strongly suppressed coupling to conduction band. This anomaly is a striking example of quantum mechanical interference related to the Berry phase inherent to graphene band structure.
We present an efficient diagrammatic method to describe nonlocal correlation effects in lattice fermion Hubbard-like models, which is based on a change of variables in the Grassmann path integrals. The new fermions are dual to the original ones and c orrespond to weakly interacting quasiparticles in the case of strong local correlations in the Hubbard model. The method starts with dynamical mean-field theory as a zeroth-order approximation and includes non-local effects in a perturbative way. In contrast to cluster approaches, this method utilizes an exact transition to a dual set of variables. It therefore becomes possible to treat the irreducible vertices of an effective {it single-impurity} problem as small parameters. This provides a very efficient interpolation between band-like weak-coupling and atomic limits. The method is illustrated on the two-dimensional Hubbard model. The antiferromagnetic pseudogap, Fermi-arc formations, and non-Fermi-liquid effects due to the van Hove singularity are correctly reproduced by the lowest-order diagrams. Extremum properties of the dual fermion approach are discussed in terms of the Feynman variational principle.
First-principles calculations of the magnetic anisotropy energy for Mn- and Fe-atoms on CuN/Cu(001) surface are performed making use of the torque method. The easy magnetization direction is found to be different for Mn and Fe atoms in accord with th e experiment. It is shown the magnetic anisotropy has a single-ion character and mainly originates from the local magnetic moment of Mn- and Fe-atoms. The uniaxial magnetic anisotropy constants are calculated in reasonable agreement with the experiment.
The Mott insulating perovskite KCuF3 is considered the archetype of an orbitally-ordered system. By using the LDA+dynamical mean-field theory (DMFT) method, we investigate the mechanism for orbital-ordering (OO) in this material. We show that the pur ely electronic Kugel-Khomskii super-exchange mechanism (KK) alone leads to a remarkably large transition temperature of T_KK about 350 K. However, orbital-order is experimentally believed to persist to at least 800 K. Thus Jahn-Teller distortions are essential for stabilizing orbital-order at such high temperatures.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا