ترغب بنشر مسار تعليمي؟ اضغط هنا

Wrapping around the Milky Way, the Sagittarius stream is the dominant substructure in the halo. Our statistical selection method has allowed us to identify 106 highly likely members of the Sagittarius stream. Spectroscopic analysis of metallicity and kinematics of all members provides us with a new mapping of the Sagittarius stream. We find correspondence between the velocity distribution of stream stars and those computed for a triaxial model of the Milky Way dark matter halo. The Sagittarius trailing arm exhibits a metallicity gradient, ranging from $-0.59$ dex to $-0.97$ dex over 142$^{circ}$. This is consistent with the scenario of tidal disruption from a progenitor dwarf galaxy that possessed an internal metallicity gradient. We note high metallicity dispersion in the leading arm, causing a lack of detectable gradient and possibly indicating orbital phase mixing. We additionally report on a potential detection of the Sextans dwarf spheroidal in our data.
The potential for Planck to detect clusters of dusty, star-forming galaxies at z greater than 1 is tested by examining the Herschel-SPIRE images of Planck Early Release Compact Source Catalog (ERCSC) sources lying in fields observed by the HerMES sur vey. Of the 16 Planck sources that lie in the roughly 90 sq. deg. examined, we find that twelve are associated with single bright Herschel sources. The remaining four are associated with overdensities of Herschel sources, making them candidate clusters of dusty, starforming galaxies. We use complementary optical and NIR data for these clumps to test this idea, and find evidence for the presence of galaxy clusters in all four cases. We use photometric redshifts and red sequence galaxies to estimate the redshifts of these clusters, finding that they range from 0.8 to 2.3. These redshifts imply that the Herschel sources in these clusters, which contribute to the detected Planck flux, are forming stars very rapidly, with typical total cluster star formation rates greater than 1000Msun per yr. The high redshift clusters discovered in these observations are used to constrain the epoch of cluster galaxy formation, finding that the galaxies in our clusters are 1 to 1.5 Gy old at z about 1 to 2. Prospects for the discovery of further clusters of dusty galaxies are discussed, using not only all sky Planck surveys, but also deeper, smaller area, Herschel surveys.
We present a fast and portable re-implementation of Piskunov and Valentis optimal-extraction algorithm (Piskunov & Valenti, 2002} in C/C++ together with full uncertainty propagation, improved cosmic-ray removal, and an optimal background-subtraction algorithm. This re-implementation can be used with IRAF and most existing data-reduction packages and leads to signal-to-noise ratios close to the Poisson limit. The algorithm is very stable, operates on spectra from a wide range of instruments (slit spectra and fibre feeds), and has been extensively tested for VLT/UVES, ESO/CES, ESO/FEROS, NTT/EMMI, NOT/ALFOSC, STELLA/SES, SSO/WiFeS, and finally, P60/SEDM-IFU data.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا