ترغب بنشر مسار تعليمي؟ اضغط هنا

Selecting Sagittarius: Identification and Chemical Characterization of the Sagittarius Stream

222   0   0.0 ( 0 )
 نشر من قبل Elaina Hyde
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Wrapping around the Milky Way, the Sagittarius stream is the dominant substructure in the halo. Our statistical selection method has allowed us to identify 106 highly likely members of the Sagittarius stream. Spectroscopic analysis of metallicity and kinematics of all members provides us with a new mapping of the Sagittarius stream. We find correspondence between the velocity distribution of stream stars and those computed for a triaxial model of the Milky Way dark matter halo. The Sagittarius trailing arm exhibits a metallicity gradient, ranging from $-0.59$ dex to $-0.97$ dex over 142$^{circ}$. This is consistent with the scenario of tidal disruption from a progenitor dwarf galaxy that possessed an internal metallicity gradient. We note high metallicity dispersion in the leading arm, causing a lack of detectable gradient and possibly indicating orbital phase mixing. We additionally report on a potential detection of the Sextans dwarf spheroidal in our data.



قيم البحث

اقرأ أيضاً

Using a spectroscopically confirmed sample of M-giants, M-dwarfs and quasars from the LAMOST survey, we assess how well WISE $&$ 2MASS color-cuts can be used to select M-giant stars. The WISE bands are very efficient at separating M-giants from M-dwa rfs and we present a simple classification that can produce a clean and relatively complete sample of M-giants. We derive a new photometric relation to estimate the metallicity for M-giants, calibrated using data from the APOGEE survey. We find a strong correlation between the $(W1-W2)$ color and $rm [M/H]$, where almost all of the scatter is due to photometric uncertainties. We show that previous photometric distance relations, which are mostly based on stellar models, may be biased and devise a new empirical distance relation, investigating trends with metallicity and star formation history. Given these relations, we investigate the properties of M-giants in the Sagittarius stream. The offset in the orbital plane between the leading and trailing tails is reproduced and, by identifying distant M-giants in the direction of the Galactic anti-center, we confirm that the previously detected debris in the outer halo is the apocenter of the trailing tail. We also find tentative evidence supporting an existing overdensity near the leading tail in the Northern Galactic hemisphere, possibly an extension to the trailing tail (so-called Branch C). We have measured the metallicity distribution along the stream, finding a clear metallicity offset between the leading and trailing tails, in agreement with models for the stream formation. We include an online table of M-giants to facilitate further studies.
Using a variety of stellar tracers -- blue horizontal branch stars, main-sequence turn-off stars and red giants -- we follow the path of the Sagittarius (Sgr) stream across the sky in Sloan Digital Sky Survey data. Our study presents new Sgr debris d etections, accurate distances and line-of-sight velocities that together help to shed new light on the puzzle of the Sgr tails. For both the leading and the trailing tail, we trace the points of their maximal extent, or apo-centric distances, and find that they lie at $R^L$ = 47.8 $pm$ 0.5 kpc and $R^T$ = 102.5 $pm$ 2.5 kpc respectively. The angular difference between the apo-centres is 93.2 $pm$ 3.5 deg, which is smaller than predicted for logarithmic haloes. Such differential orbital precession can be made consistent with models of the Milky Way in which the dark matter density falls more quickly with radius. However, currently, no existing Sgr disruption simulation can explain the entirety of the observational data. Based on its position and radial velocity, we show that the unusually large globular cluster NGC 2419 can be associated with the Sgr trailing stream. We measure the precession of the orbital plane of the Sgr debris in the Milky Way potential and show that, surprisingly, Sgr debris in the primary (brighter) tails evolves differently to the secondary (fainter) tails, both in the North and the South.
The SDSS-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey provides precise chemical abundances of 18 chemical elements for $sim$ 176,000 red giant stars distributed over much of the Milky Way Galaxy (MW), and includes observa tions of the core of the Sagittarius dwarf spheroidal galaxy (Sgr). The APOGEE chemical abundance patterns of Sgr have revealed that it is chemically distinct from the MW in most chemical elements. We employ a emph{k}-means clustering algorithm to 6-dimensional chemical space defined by [(C+N)/Fe], [O/Fe], [Mg/Fe], [Al/Fe], [Mn/Fe], and [Ni/Fe] to identify 62 MW stars in the APOGEE sample that have Sgr-like chemical abundances. Of the 62 stars, 35 have emph{Gaia} kinematics and positions consistent with those predicted by emph{N}-body simulations of the Sgr stream, and are likely stars that have been stripped from Sgr during the last two pericenter passages ($<$ 2 Gyr ago). Another 20 of the 62 stars exhibit chemical abundances indistinguishable from the Sgr stream stars, but are on highly eccentric orbits with median $r_{rm apo} sim $ 25 kpc. These stars are likely the `accreted halo population thought to be the result of a separate merger with the MW 8-11 Gyr ago. We also find one hypervelocity star candidate. We conclude that Sgr was enriched to [Fe/H] $sim$ -0.2 before its most recent pericenter passage. If the `accreted halo population is from one major accretion event, then this progenitor galaxy was enriched to at least [Fe/H] $sim$ -0.6, and had a similar star formation history to Sgr before merging.
We analyze chemical abundances of stars in the Sagittarius (Sgr) tidal stream using high-resolution Gemini+GRACES spectra of 42 members of the highest surface brightness portions of both the trailing and leading arms. Targets were chosen using a 2MAS S+WISE color-color selection, combined with LAMOST radial velocities. In this study, we analyze [Fe/H] and alpha-elements produced by both hydrostatic (O, Mg) and explosive (Si, Ca, Ti) nucleosynthetic processes. The average [Fe/H] for our Sgr stream stars is lower than that for stars in the Sgr core, and stars in the trailing and leading arms show systematic differences in [Fe/H]. Both hydrostatic and explosive elements are depleted relative to Milky Way (MW) disk and halo stars, with a larger gap between the MW trend and Sgr stars for the hydrostatic elements. Chemical abundances of Sgr stream stars show similar patterns to those measured in the core of the Sgr dSph. We explore the ratio of hydrostatic to explosive alpha-elements [$alpha_{rm h/ex}$] (which we refer to as the HEx ratio). Our observed HEx ratio trends for Sgr debris are deficient relative to MW stars. Via simple chemical evolution modeling, we show that these HEx ratio patterns are consistent with a Sgr IMF that lacks the most massive stars. This study provides a link between the chemical properties in the intact Sgr core and the significant portion of the Sgr systems luminosity that is estimated to currently reside in the streams.
We present the first detailed quantitative study of the stellar populations of the Sagittarius (Sgr) streams within the Stripe 82 region, using photometric and spectroscopic observations from the Sloan Digital Sky Survey (SDSS). The star formation hi story (SFH) is determined separately for the bright and faint Sgr streams, to establish whether both components consist of a similar stellar population mix or have a distinct origin. Best fit SFH solutions are characterised by a well-defined, tight sequence in age-metallicity space, indicating that star formation occurred within a well-mixed, homogeneously enriched medium. Star formation rates dropped sharply at an age of ~5-7 Gyr, possibly related to the accretion of Sgr by the MW. Finally, the Sgr sequence displays a change of slope in age-metallicity space at an age between 11-13 Gyr consistent with the Sgr alpha-element knee, indicating that supernovae type Ia started contributing to the abundance pattern ~1-3 Gyr after the start of star formation. Results for both streams are consistent with being drawn from the parent Sgr population mix, but at different epochs. The SFH of the bright stream starts from old, metal-poor populations and extends to a metallicity of [Fe/H]~-0.7, with peaks at ~7 and 11 Gyr. The faint SFH samples the older, more metal-poor part of the Sgr sequence, with a peak at ancient ages and stars mostly with [Fe/H]<-1.3 and age>9 Gyr. Therefore, we argue in favour of a scenario where the faint stream consists of material stripped i) earlier, and ii) from the outskirts of the Sgr dwarf.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا