ترغب بنشر مسار تعليمي؟ اضغط هنا

124 - A. Humphrey 2015
A significant minority of high redshift radio galaxy (HzRG) candidates show extremely red broad band colours and remain undetected in emission lines after optical `discovery spectroscopy. In this paper we present deep GTC optical imaging and spectros copy of one such radio galaxy, 5C 7.245, with the aim of better understanding the nature of these enigmatic objects. Our g-band image shows no significant emission coincident with the stellar emission of the host galaxy, but does reveal faint emission offset by ~3 (26 kpc) therefrom along a similar position angle to that of the radio jets, reminiscent of the `alignment effect often seen in the optically luminous HzRGs. This offset g-band source is also detected in several UV emission lines, giving it a redshift of 1.609, with emission line flux ratios inconsistent with photoionization by young stars or an AGN, but consistent with ionization by fast shocks. Based on its unusual gas geometry, we argue that in 5C 7.245 we are witnessing a rare (or rarely observed) phase in the evolution of quasar hosts when stellar mass assembly, accretion onto the back hole, and powerful feedback activity has eradicated its cold gas from the central ~20 kpc, but is still in the process of cleansing cold gas from its extended halo.
We have identified ionized outflows in the narrow line region of all but one SDSS type 2 quasars (QSO2) at z<~0.1 (20/21, detection rate 95%), implying that this is a ubiquitous phenomenon in this object class also at the lowest z. The outflowing gas has high densities (n_e>1000 cm-3) and covers a region the size of a few kpc. This implies ionized outflow masses M~(0.3-2.4)x1e6 Msun and mass outflow rates M(dot)<few Msun yr-1. The triggering mechanism of the outflows is related to the nuclear activity. The QSO2 can be classified in two groups according to the behavior and properties of the outflowing gas. QSO2 in Group 1 (5/20 objects) show the most extreme turbulence, they have on average higher radio luminosities and higher excess of radio emission. QSO2 in Group 2 (15/20 objects) show less extreme turbulence, they have lower radio luminosities and, on average, lower or no radio excess. We propose that two competing outflow mechanisms are at work: radio jets and accretion disk winds. Radio jet induced outflows are dominant in Group 1, while disk winds dominate in Group 2. We find that the radio jet mode is capable of producing more extreme outflows. To test this interpretation we predict that: 1) high resolution VLBA imaging will reveal the presence of jets in Group 1 QSO2; 2) the morphology of their extended ionized nebulae must be more highly collimated and kinematically perturbed.
We present and analyse integral-field observations of six type-II QSOs with z=0.3-0.4, selected from the Sloan Digital Sky Survey (SDSS). Two of our sample are found to be surrounded by a nebula of warm ionized gas, with the largest nebula extending across 8 (40 kpc). Some regions of the extended nebulae show kinematics that are consistent with gravitational motion, while other regions show relatively perturbed kinematics: velocity shifts and line widths too large to be readily explained by gravitational motion. We propose that a ~20 kpc x20 kpc outflow is present in one of the galaxies. Possible mechanisms for triggering the outflow are discussed. In this object, we also find evidence for ionization both by shocks and the radiation field of the AGN.
95 - S.F.Sanchez , A. Humphrey 2008
In this article we study the morphology, kinematics and ionization properties of the giant ionized gas nebulae surrounding two high redshift radio galaxies, 4C40.36 (z=2.27) and 4C48.48 (z=2.34).}{Integral Field Spectroscopy observations were taken u sing the PPAK bundle of the PMAS spectrograph, mounted on the 3.5m on the Calar Alto Observatory, in order to cover a field-of-view of 64 X 72 centered in each radio galaxy. The observations spanned over 5 nights, using two different spectral resolutions (with FWHM~4 AA and ~8 AA respectively), covering the optical wavelength range from ~3700 AA to ~7100 AA, which corresponds to the rest-frame ultraviolet range from ~1100 AA to ~2000 AA >. Various emission lines are detected within this wavelength range, including Lyalpha (1216 AA), NV (1240 AA), CIV (1549 AA), HeII (1640 AA), OIII] (1663 AA) and CIII] (1909AA). The dataset was used to derive the spatial distribution of the flux intensity of each of these lines and the gas kinematics. The properties of the emission lines in the nuclear regions were studied in detail.In agreement with previous studies, we find that both objects are embedded in a large ionized gas nebula, where Ly alpha emission is extended across ~100 kpc or more. The CIV and HeII emission lines are also spatially extended. The nebulae are generally aligned with the radio axis, although we detect emission far from it. In 4C+48.48, there is a band of low Ly-alpha/CIV running perpendicular to the radio axis, at the location of the active nucleus. This feature might be the observational signature of an edge-on disk of neutral gas. The kinematics of both nebulae are inconsistent with stable rotation, although they are not inconsistent with infall or outflow.
We present an investigation into the absorber in front of the z=2.63 radio galaxy MRC 2025-218, using integral field spectroscopy obtained at the Very Large Telescope, and long slit spectroscopy obtained at the Keck II telescope. The properties of MR C 2025-218 are particularly conducive to study the nature of the absorbing gas, i.e., this galaxy shows bright and spatially extended Ly-alpha emission, along with bright continuum emission from the active nucleus. Ly-alpha absorption is detected across ~40x30 kpc^2, has a covering factor of ~1, and shows remarkably little variation in its properties across its entire spatial extent. This absorber is kinematically detached from the extended emission line region (EELR). Its properties suggest that the absorber is outside of the EELR. We derive lower limits to the HI, HII and H column densities for this absorber of 3x10^16, 7x10^17 and 2x10^18 cm^-2, respectively. Moreover, the relatively bright emission from the active nucleus has allowed us to measure a number of metal absorption lines: CI, CII, CIV, NV, OI, SiII, SiIV, AlII and AlIII. The column density ratios are most naturally explained using photoionization by a hard continuum, with an ionization parameter U~0.0005-0.005. Shocks or photoionization by young stars cannot reproduce satisfactorily the measured column ratios. Using the ratio between the SiII* and SiII column densities, we derive a lower limit of >10 cm^-3 for the electron density of the absorber. The data do not allow useful constraints to be placed on the metallicity of the absorber. We consider two possibilities for the nature of this absorber: the cosmological infall of gas, and an outflow driven by supernovae or the radio-jets.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا