ترغب بنشر مسار تعليمي؟ اضغط هنا

65 - A. Fukui , A. Gould , T. Sumi 2015
We report the discovery of a microlensing exoplanet OGLE-2012-BLG-0563Lb with the planet-star mass ratio ~1 x 10^{-3}. Intensive photometric observations of a high-magnification microlensing event allow us to detect a clear signal of the planet. Alth ough no parallax signal is detected in the light curve, we instead succeed at detecting the flux from the host star in high-resolution JHK-band images obtained by the Subaru/AO188 and IRCS instruments, allowing us to constrain the absolute physical parameters of the planetary system. With the help of a spectroscopic information about the source star obtained during the high-magnification state by Bensby et al., we find that the lens system is located at 1.3^{+0.6}_{-0.8} kpc from us, and consists of an M dwarf (0.34^{+0.12}_{-0.20} M_sun) orbited by a Saturn-mass planet (0.39^{+0.14}_{-0.23} M_Jup) at the projected separation of 0.74^{+0.26}_{-0.42} AU (close model) or 4.3^{+1.5}_{-2.5} AU (wide model). The probability of contamination in the host stars flux, which would reduce the masses by a factor of up to three, is estimated to be 17%. This possibility can be tested by future high-resolution imaging. We also estimate the (J-Ks) and (H-Ks) colors of the host star, which are marginally consistent with a low metallicity mid-to-early M dwarf, although further observations are required for the metallicity to be conclusive. This is the fifth sub-Jupiter-mass (0.2<m_p/M_Jup<1) microlensing planet around an M dwarf with the mass well constrained. The relatively rich harvest of sub-Jupiters around M dwarfs is contrasted with a possible paucity of ~1--2 Jupiter-mass planets around the same type of star, which can be explained by the planetary formation process in the core-accretion scheme.
82 - Wei Zhu , A. Udalski , A. Gould 2015
We report the first mass and distance measurement of a caustic-crossing binary system OGLE-2014-BLG-1050L using the space-based microlens parallax method. emph{Spitzer} captured the second caustic-crossing of the event, which occurred $sim$10 days be fore that seen from Earth. Due to the coincidence that the source-lens relative motion was almost parallel to the direction of the binary-lens axis, the four-fold degeneracy, which was known before only to occur in single-lens events, persists in this case, leading to either a lower-mass (0.2 $M_odot$ and 0.07 $M_odot$) binary at $sim$1.1 kpc or a higher-mass (0.9 $M_odot$ and 0.35 $M_odot$) binary at $sim$3.5 kpc. However, the latter solution is strongly preferred for reasons including blending and lensing probability. OGLE-2014-BLG-1050L demonstrates the power of microlens parallax in probing stellar and substellar binaries.
We present microlens parallax measurements for 21 (apparently) isolated lenses observed toward the Galactic bulge that were imaged simultaneously from Earth and Spitzer, which was ~1 AU West of Earth in projection. We combine these measurements with a kinematic model of the Galaxy to derive distance estimates for each lens, with error bars that are small compared to the Suns Galactocentric distance. The ensemble therefore yields a well-defined cumulative distribution of lens distances. In principle it is possible to compare this distribution against a set of planets detected in the same experiment in order to measure the Galactic distribution of planets. Since these Spitzer observations yielded only one planet, this is not yet possible in practice. However, it will become possible as larger samples are accumulated.
127 - A. Gould , A. Udalski , I.-G. Shin 2014
We detect a cold, terrestrial planet in a binary-star system using gravitational microlensing. The planet has low mass (2 Earth masses) and lies projected at $a_{perp,ph}$ ~ 0.8 astronomical units (AU) from its host star, similar to the Earth-Sun dis tance. However, the planet temperature is much lower, T<60 Kelvin, because the host star is only 0.10--0.15 solar masses and therefore more than 400 times less luminous than the Sun. The host is itself orbiting a slightly more massive companion with projected separation $a_{perp,ch}=$10--15 AU. Straightforward modification of current microlensing search strategies could increase their sensitivity to planets in binary systems. With more detections, such binary-star/planetary systems could place constraints on models of planet formation and evolution. This detection is consistent with such systems being very common.
54 - J.C. Yee , C. Han , A. Gould 2014
We report the discovery of MOA-2013-BLG-220Lb, which has a super-Jupiter mass ratio $q=3.01pm 0.02times 10^{-3}$ relative to its host. The proper motion, $mu=12.5pm 1, {rm mas},{rm yr}^{-1}$, is one of the highest for microlensing planets yet discove red, implying that it will be possible to separately resolve the host within $sim 7$ years. Two separate lines of evidence imply that the planet and host are in the Galactic disk. The planet could have been detected and characterized purely with follow-up data, which has important implications for microlensing surveys, both current and into the LSST era.
72 - H. Park , C. Han , A. Gould 2014
Characterizing a microlensing planet is done from modeling an observed lensing light curve. In this process, it is often confronted that solutions of different lensing parameters result in similar light curves, causing difficulties in uniquely interp reting the lens system, and thus understanding the causes of different types of degeneracy is important. In this work, we show that incomplete coverage of a planetary perturbation can result in degenerate solutions even for events where the planetary signal is detected with a high level of statistical significance. We demonstrate the degeneracy for an actually observed event OGLE-2012-BLG-0455/MOA-2012-BLG-206. The peak of this high-magnification event $(A_{rm max}sim400)$ exhibits very strong deviation from a point-lens model with $Deltachi^{2}gtrsim4000$ for data sets with a total number of measurement 6963. From detailed modeling of the light curve, we find that the deviation can be explained by four distinct solutions, i.e., two very different sets of solutions, each with a two-fold degeneracy. While the two-fold (so-called close/wide) degeneracy is well-understood, the degeneracy between the radically different solutions is not previously known. The model light curves of this degeneracy differ substantially in the parts that were not covered by observation, indicating that the degeneracy is caused by the incomplete coverage of the perturbation. It is expected that the frequency of the degeneracy introduced in this work will be greatly reduced with the improvement of the current lensing survey and follow-up experiments and the advent of new surveys.
119 - A. Gould 2012
The Galactic bulge source MOA-2010-BLG-523S exhibited short-term deviations from a standard microlensing lightcurve near the peak of an Amax ~ 265 high-magnification microlensing event. The deviations originally seemed consistent with expectations fo r a planetary companion to the principal lens. We combine long-term photometric monitoring with a previously published high-resolution spectrum taken near peak to demonstrate that this is an RS CVn variable, so that planetary microlensing is not required to explain the lightcurve deviations. This is the first spectroscopically confirmed RS CVn star discovered in the Galactic bulge.
83 - I.-G. Shin , C. Han , A. Gould 2012
Brown dwarfs are important objects because they may provide a missing link between stars and planets, two populations that have dramatically different formation history. In this paper, we present the candidate binaries with brown dwarf companions tha t are found by analyzing binary microlensing events discovered during 2004 - 2011 observation seasons. Based on the low mass ratio criterion of q < 0.2, we found 7 candidate events, including OGLE-2004-BLG-035, OGLE-2004-BLG-039, OGLE-2007-BLG-006, OGLE-2007-BLG-399/MOA-2007-BLG-334, MOA-2011-BLG-104/OGLE-2011-BLG-0172, MOA-2011-BLG-149, and MOA-201-BLG-278/OGLE-2011-BLG-012N. Among them, we are able to confirm that the companions of the lenses of MOA-2011-BLG-104/OGLE-2011-BLG-0172 and MOA-2011-BLG-149 are brown dwarfs by determining the mass of the lens based on the simultaneous measurement of the Einstein radius and the lens parallax. The measured mass of the brown dwarf companions are (0.02 +/- 0.01) M_Sun and (0.019 +/- 0.002) M_Sun for MOA-2011-BLG-104/OGLE-2011-BLG-0172 and MOA-2011-BLG-149, respectively, and both companions are orbiting low mass M dwarf host stars. More microlensing brown dwarfs are expected to be detected as the number of lensing events with well covered light curves increases with new generation searches.
223 - J. Skowron , A. Gould 2012
We present a new algorithm to solve polynomial equations, and publish its code, which is 1.6-3 times faster than the ZROOTS subroutine that is commercially available from Numerical Recipes, depending on application. The largest improvement, when comp ared to naive solvers, comes from a fail-safe procedure that permits us to skip the majority of the calculations in the great majority of cases, without risking catastrophic failure in the few cases that these are actually required. Second, we identify a discriminant that enables a rational choice between Laguerres Method and Newtons Method (or a new intermediate method) on a case-by-case basis. We briefly review the history of root solving and demonstrate that Newtons Method was discovered neither by Newton (1671) nor by Raphson (1690), but only by Simpson (1740). Some of the arguments leading to this conclusion were first given by the British historian of science Nick Kollerstrom in 1992, but these do not appear to have penetrated the astronomical community. Finally, we argue that Numerical Recipes should voluntarily surrender its copyright protection for non-profit applications, despite the fact that, in this particular case, such protection was the major stimulant for developing our improved algorithm.
111 - T. Bensby , S. Feltzing , A. Gould 2012
We have determined detailed elemental abundances and stellar ages for a sample of now 38 microlensed dwarf and subgiant stars in the Galactic bulge. Stars with sub-solar metallicities are all old and have enhanced alpha-element abundances -- very sim ilar to what is seen for local thick disk stars. The metal-rich stars on the other hand show a wide variety of stellar ages, ranging from 3-4 Gyr to 12 Gyr, and an average around 7-8 Gyr. The existence of young and metal-rich stars are in conflict with recent photometric studies of the bulge which claim that the bulge only contains old stars.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا