ترغب بنشر مسار تعليمي؟ اضغط هنا

99 - A Freise , S Hild , K Somiya 2009
The third generation of gravitational wave observatories, aiming to provide 100 times better sensitivity than currently operating interferometers, is expected to establish the evolving field of gravitational wave astronomy. A key element for achievin g the ambitious sensitivity goal is the exploration of new interferometer geometries, topologies and configurations. In this article we review the current status of the ongoing design work for third-generation gravitational wave observatories. The main focus is set on the evaluation of the detector geometry and detector topology. In addition we discuss some promising detector configurations and potential noise reduction schemes.
73 - J. Hallam 2009
Diffraction gratings have been proposed as core elements in future laser-interferometric gravitational-wave detectors. In this paper, we use a steady-state technique to derive coupling of lateral grating displacement to the output ports of a diffract ive Fabry-Perot cavity. By introducing a signal to noise ratio (SNR) for each of the three cavity output ports the magnitude of the noise sidebands originating from lateral grating displacement are compared to the magnitude of a potential gravitational wave signal. For the example of a 3km long Fabry-Perot cavity featuring parameters similar to the planned Advanced Virgo instrument, we found that the forward-reflecting grating port offers the highest SNR at low frequencies. Furthermore, for this example suspension requirements for lateral isolation were computed, and a factor of twenty relaxation at a frequency of 10Hz can be gained over the transmitted port by observing the forward-reflected port.
The upcoming European design study `Einstein gravitational-wave Telescope represents the first step towards a substantial, international effort for the design of a third-generation interferometric gravitational wave detector. It is generally believed that third-generation instruments might not be installed into existing infrastructures but will provoke a new search for optimal detector sites. Consequently, the detector design could be subject to fewer constraints than the on-going design of the second generation instruments. In particular, it will be prudent to investigate alternatives to the traditional L-shaped Michelson interferometer. In this article, we review an old proposal to use three Michelson interferometers in a triangular configuration. We use this example of a triple Michelson interferometer to clarify the terminology and will put this idea into the context of more recent research on interferometer technologies. Furthermore the benefits of a triangular detector will be used to motivate this design as a good starting point for a more detailed research effort towards a third-generation gravitational wave detector.
146 - S. Hild , A. Freise , M. Mantovani 2008
Several large-scale interferometric gravitational-wave detectors use resonant arm cavities to enhance the light power in the interferometer arms. These cavities are based on different optical designs: One design uses wedged input mirrors to create ad ditional optical pick-off ports for deriving control signals. The second design employs input mirrors without wedge and thus offers the possibility to use the etalon effect inside the input mirrors for tuning the finesse of the arm cavities. In this article we introduce a concept of maximized flexibility that combines both of these options, by featuring wedges at the input mirrors and using the etalon effect instead in the end mirrors. We present a design for the arm cavities of Advanced Virgo. We have used numerical simulations to derive requirements for the manufacturing accuracy of an end mirror etalon for Advanced Virgo. Furthermore, we give analytical approximations for the achievable tuning range of the etalon in dependence on the reflectance, the curvature and the orientation of the etalon back surface.
Diffraction gratings have been proposed as core optical elements in future laser-interferometric gravitational-wave detectors. In this paper we derive equations for the coupling between alignment noise and phase noise at diffraction gratings. In comp arison to a standard reflective component (mirror or beam splitter) the diffractive nature of the gratings causes an additional coupling of geometry changes into alignment and phase noise. Expressions for the change in angle and optical path length of each outgoing beam are provided as functions of a translation or rotation of the incoming beam with respect to the grating. The analysis is based entirely on the grating equation and the geometry of the setup. We further analyse exemplary optical setups which have been proposed for the use in future gravitational wave detectors. We find that the use of diffraction gratings yields a strong coupling of alignment noise into phase noise. By comparing the results with the specifications of current detectors we show that this additional noise coupling results in new, challenging requirements for the suspension and isolation systems for the optical components.
142 - S. Hild , A. Freise 2007
We introduce a concept that uses detuned arm cavities to increase the shot noise limited sensitivity of LIGO without increasing the light power inside the arm cavities. Numerical simulations show an increased sensitivity between 125 and 400 Hz, with a maximal improvement of about 80% around 225 Hz, while the sensitivity above 400Hz is decreased. Furthermore our concept is found to give a sensitivity similar to that of a conventional RSE configuration with a Signal-Recycling mirror of moderate reflectivity. In the near future detuned arm cavities might be a beneficial alternative to RSE, due the potentially less hardware intensive implementation of the proposed concept.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا