ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase and alignment noise in grating interferometers

123   0   0.0 ( 0 )
 نشر من قبل Andreas Freise
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Diffraction gratings have been proposed as core optical elements in future laser-interferometric gravitational-wave detectors. In this paper we derive equations for the coupling between alignment noise and phase noise at diffraction gratings. In comparison to a standard reflective component (mirror or beam splitter) the diffractive nature of the gratings causes an additional coupling of geometry changes into alignment and phase noise. Expressions for the change in angle and optical path length of each outgoing beam are provided as functions of a translation or rotation of the incoming beam with respect to the grating. The analysis is based entirely on the grating equation and the geometry of the setup. We further analyse exemplary optical setups which have been proposed for the use in future gravitational wave detectors. We find that the use of diffraction gratings yields a strong coupling of alignment noise into phase noise. By comparing the results with the specifications of current detectors we show that this additional noise coupling results in new, challenging requirements for the suspension and isolation systems for the optical components.



قيم البحث

اقرأ أيضاً

Grating reflectors have been repeatedly discussed to improve the noise performance of metrological applications due to the reduction or absence of any coating material. So far, however, no quantitative estimate on the thermal noise of these reflectiv e structures exists. In this work we present a theoretical calculation of a grating reflectors noise. We further apply it to a proposed 3rd generation gravitational wave detector. Depending on the grating geometry, the grating material and the temperature we obtain a thermal noise decrease by up to a factor of ten compared to conventional dielectric mirrors. Thus the use of grating reflectors can substantially improve the noise performance in metrological applications.
We present an overview of quantum noise in gravitational wave interferometers. Gravitational wave detectors are extensively modified variants of a Michelson interferometer and the quantum noise couplings are strongly influenced by the interferometer configuration. We describe recent developments in the treatment of quantum noise in the complex interferometer configurations of present-day and future gravitational-wave detectors. In addition, we explore prospects for the use of squeezed light in future interferometers, including consideration of the effects of losses, and the choice of optimal readout schemes.
107 - Yanbei Chen 2006
We propose a class of displacement- and laser-noise free gravitational-wave-interferometer configurations, which does not sense non-geodesic mirror motions and laser noises, but provides non-vanishing gravitational-wave signal. Our interferometer con sists of 4 mirrors and 2 beamsplitters, which form 4 Mach-Zehnder interferometers. By contrast to previous works, no composite mirrors are required. Each mirror in our configuration is sensed redundantly, by at least two pairs of incident and reflected beams. Displacement- and laser-noise free detection is achieved when output signals from these 4 interferometers are combined appropriately. Our 3-dimensional interferometer configuration has a low-frequency response proportional to f^2, which is better than the f^3 achievable by previous 2-dimensional configurations.
The recent discovery of merging black holes suggests that a stochastic gravitational-wave background is within reach of the advanced detector network operating at design sensitivity. However, correlated magnetic noise from Schumann resonances threate ns to contaminate observation of a stochastic background. In this paper, we report on the first effort to eliminate intercontinental correlated noise from Schumann resonances using Wiener filtering. Using magnetometers as proxies for gravitational-wave detectors, we demonstrate as much as a factor of two reduction in the coherence between magnetometers on different continents. While much work remains to be done, our results constitute a proof-of-principle and motivate follow-up studies with a dedicated array of magnetometers.
We consider a class of proposed gravitational wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noi se of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا