ترغب بنشر مسار تعليمي؟ اضغط هنا

118 - G. Clement , A. Fabbri 2014
In the context of gravitational collapse and black hole formation, we reconsider the problem to describe analytically the critical collapse of a massless and minimally coupled scalar field in $2+1$ gravity.
We consider a sonic analog of a black hole realized in the one-dimensional flow of a Bose-Einstein condensate. Our theoretical analysis demonstrates that one- and two-body momentum distributions accessible by present-day experimental techniques provi de clear direct evidence (i) of the occurrence of a sonic horizon, (ii) of the associated acoustic Hawking radiation and (iii) of the quantum nature of the Hawking process. The signature of the quantum behavior persists even at temperatures larger than the chemical potential.
76 - A. Fabbri 2012
Observing quantum particle creation by black holes (Hawking radiation) in the astrophysical context is, in ordinary situations, hopeless. Nevertheless the Hawking effect, which depends only on kinematical properties of wave propagation in the presenc e of horizons, is present also in nongravitational contexts, for instance in stationary fluids undergoing supersonic flow. We present results on how to observe the analog Hawking radiation in Bose-Einstein condensates by a direct measurement of the density correlations due to the phonon pairs (Hawking quanta-partner) created by the acoustic horizon.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا