ﻻ يوجد ملخص باللغة العربية
We consider a sonic analog of a black hole realized in the one-dimensional flow of a Bose-Einstein condensate. Our theoretical analysis demonstrates that one- and two-body momentum distributions accessible by present-day experimental techniques provide clear direct evidence (i) of the occurrence of a sonic horizon, (ii) of the associated acoustic Hawking radiation and (iii) of the quantum nature of the Hawking process. The signature of the quantum behavior persists even at temperatures larger than the chemical potential.
We study the two-body momentum correlation signal in a quasi one dimensional Bose-Einstein condensate in the presence of a sonic horizon. We identify the relevant correlation lines in momentum space and compute the intensity of the corresponding sign
We model a sonic black hole analog in a quasi one-dimensional Bose-Einstein condensate, using a Gross-Pitaevskii equation matching the configuration of a recent experiment by Steinhauer [Nat. Phys. 10, 864 (2014)]. The model agrees well with importan
Hawking radiation, the spontaneous emission of thermal photons from an event horizon, is one of the most intriguing and elusive predictions of field theory in curved spacetimes. A formally analogue phenomenon occurs at the supersonic transition of a
We study the properties of a $2+1$ dimensional Sonic black hole (SBH) that can be realised, in a quasi-two-dimensional two-component spin-orbit coupled Bose-Einstein condensate (BEC). The corresponding equation for phase fluctuations in the total den
We study the quantum fluctuations in a one dimensional Bose-Einstein condensate realizing an analogous acoustic black hole. The taking into account of evanescent channels and of zero modes makes it possible to accurately reproduce recent experimental