ترغب بنشر مسار تعليمي؟ اضغط هنا

Transitions between quantum states by photon absorption or emission are intimately related to symmetries of the system which lead to selection rules and the formation of dark states. In a circuit quantum electrodynamics setup, in which two resonant s uperconducting qubits are coupled through an on-chip cavity and driven via the common cavity field, one single-excitation state remains dark. Here, we demonstrate that this dark state can be excited using local phase control of individual qubit drives to change the symmetry of the driving field. We observe that the dark state decay via spontaneous emission into the cavity is suppressed, a characteristic signature of subradiance. This local control technique could be used to prepare and study highly correlated quantum states of cavity-coupled qubits.
We present experimental results on the crosstalk between two AC-operated dispersive bifurcation detectors, implemented in a circuit for high-fidelity readout of two strongly coupled flux qubits. Both phase-dependent and phase-independent contribution s to the crosstalk are analyzed. For proper tuning of the phase the measured crosstalk is 0.1 % and the correlation between the measurement outcomes is less than 0.05 %. These results show that bifurcative readout provides a reliable and generic approach for multi-partite correlation experiments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا