ترغب بنشر مسار تعليمي؟ اضغط هنا

135 - A. Durbala 2009
We present the results of a Fourier photometric decomposition of a representative sample of ~100 isolated Sb-Sc CIG/AMIGA galaxies. It complements the analysis presented in Durbala et al. 2008 for the same sample by allowing a description of the spir al structure morphology. We estimate dynamical measures like torque strength for bar and spiral, and also the total nonaxisymmetric torque. We explore the interplay between the spiral and bar components of galaxies. Both the length and the contrast of the Fourier bars decrease along the morphological sequence Sb-Sbc-Sc, with bars in earlier types being longer and showing higher contrast. Bars of Sb galaxies are ~3x longer than bars in Sc types. We find that longer bars are not necessarily stronger (as quantified by the torque Q_{b} measure), but longer bars show a higher contrast, in very good agreement with theoretical predictions. Our data suggests that bar and spiral components are rather independent in the sense that the torque strengths of the two components are not correlated. The total strength Q_{g} is a very reliable tracer of the bar strength Q_{b}, the two quantities showing a very tight linear correlation. Comparison with a similar sample of disk galaxies extracted from the OSUBGS indicates that the isolated CIG/AMIGA galaxies host significantly longer Fourier bars and possibly show a different distribution of spiral torque Q_{s}. The Fourier analysis also revealed a potential case of counterwinding spiral structure (NGC 5768), which deserves further kinematic study. We find that m = 2 (i.e., dominating two-armed pattern) is the most common spiral arm multiplicity among the sample of Sb-Sc CIG/AMIGA galaxies (~40%), m = 2&3 and m = 1&2 are found in ~28% and ~13% of isolated galaxies, respectively.
94 - A. Durbala 2008
We perform a detailed photometric analysis (bulge-disk-bar decomposition and Concentration-Asymmetry-Clumpiness - CAS parametrization) for a well defined sample of isolated galaxies, extracted from the Catalog of Isolated Galaxies (Karachentseva 1973 ) and reevaluated morphologically in the context of the AMIGA project. We focus on Sb-Sc morphological types, as they are the most representative population among the isolated spiral galaxies. Assuming that the bulge Sersic index and/or Bulge/Total luminosity ratios are reasonable diagnostics for pseudo- versus classical bulges, we conclude that the majority of late-type isolated disk galaxies likely host pseudobulges rather than classical bulges. Our parametrization of galactic bulges and disks suggests that the properties of the pseudobulges are strongly connected to those of the disks. This may indicate that pseudobulges are formed through internal processes within the disks (i.e. secular evolution) and that bars may play an important role in their formation. Although the sample under investigation covers a narrow morphological range, a clear separation between Sb and Sbc-Sc types is observed in various measures, e.g. the former are redder, brighter, have larger disks and larger bars, more luminous bulges, are more concentrated, more symmetric and clumpier than the latter. A comparison with samples of spiral galaxies (within the same morphological range) selected without isolation criteria reveals that the isolated galaxies tend to host larger bars, are more symmetric, less concentrated and less clumpy.
We present a multiwavelength study of the highly evolved compact galaxy group known as Seyferts Sextet (HCG79: SS). We interpret SS as a 2-3 Gyr more evolved analog of Stephans Quintet (HCG92: SQ). We postulate that SS formed by sequential acquisitio n of 4-5 primarily late-type field galaxies. Four of the five galaxies show an early-type morphology which is likely the result of secular evolution driven by gas stripping. Stellar stripping has produced a massive/luminous halo and embedded galaxies that are overluminous for their size. These are interpreted as remnant bulges of the accreted spirals. H79d could be interpreted as the most recent intruder being the only galaxy with an intact ISM and uncertain evidence for tidal perturbation. In addition to stripping activity we find evidence for past accretion events. H79b (NGC6027) shows a strong counter-rotating emission line component interpreted as an accreted dwarf spiral. H79a shows evidence for an infalling component of gas representing feedback or possible cross fueling by H79d. The biggest challenge to this scenario involves the low gas fraction in the group. If SS formed from normal field spirals then much of the gas is missing. Finally, despite its advanced stage of evolution, we find no evidence for major mergers and infer that SS (and SQ) are telling us that such groups coalesce via slow dissolution.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا