ترغب بنشر مسار تعليمي؟ اضغط هنا

Seyferts Sextet: A Slowly Dissolving Stephans Quintet?

313   0   0.0 ( 0 )
 نشر من قبل Adriana Durbala
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a multiwavelength study of the highly evolved compact galaxy group known as Seyferts Sextet (HCG79: SS). We interpret SS as a 2-3 Gyr more evolved analog of Stephans Quintet (HCG92: SQ). We postulate that SS formed by sequential acquisition of 4-5 primarily late-type field galaxies. Four of the five galaxies show an early-type morphology which is likely the result of secular evolution driven by gas stripping. Stellar stripping has produced a massive/luminous halo and embedded galaxies that are overluminous for their size. These are interpreted as remnant bulges of the accreted spirals. H79d could be interpreted as the most recent intruder being the only galaxy with an intact ISM and uncertain evidence for tidal perturbation. In addition to stripping activity we find evidence for past accretion events. H79b (NGC6027) shows a strong counter-rotating emission line component interpreted as an accreted dwarf spiral. H79a shows evidence for an infalling component of gas representing feedback or possible cross fueling by H79d. The biggest challenge to this scenario involves the low gas fraction in the group. If SS formed from normal field spirals then much of the gas is missing. Finally, despite its advanced stage of evolution, we find no evidence for major mergers and infer that SS (and SQ) are telling us that such groups coalesce via slow dissolution.

قيم البحث

اقرأ أيضاً

55 - E. Xanthopoulos 2002
We present MERLIN L-band images of the compact galaxy group, Stephans Quintet. The Seyfert 2 galaxy, NGC 7319, the brightest member of the compact group, is seen to have a triple radio structure typical of many extra-galactic radio sources which have a flat spectrum core and two steep spectrum lobes with hot spots. The two lobes are asymmetrically distributed on opposite sides of the core along the minor axis of the galaxy. Ultraviolet emission revealed in a high resolution HRC/ACS HST image is strongly aligned with the radio plasma and we interpret the intense star formation in the core and north lobe as an event induced by the collision of the north radio jet with over-dense ambient material. In addition, a re-mapping of archive VLA L-band observations reveals more extended emission along the major axis of the galaxy which is aligned with the optical axis. Images formed from the combined MERLIN and archive VLA data reveal more detailed structure of the two lobes and hot spots.
We use smoothed particle hydrodynamics (SPH) models to study the large-scale morphology and dynamical evolution of the intergalactic gas in Stephans Quintet, and compare to multiwavelength observations. Specifically, we model the formation of the hot X-ray gas, the large-scale shock, and emission line gas as the result of NGC 7318b colliding with the group. We also reproduce the N-body model of Renaud and Appleton for the tidal structures in the group.
113 - G. Natale , R. J. Tuffs , C. K. Xu 2010
We analyse a comprehensive set of MIR/FIR observations of Stephans Quintet (SQ), taken with the Spitzer Space Observatory. Our study reveals the presence of a luminous (L_{IR}approx 4.6x10^43 erg/s) and extended component of infrared dust emission, n ot connected with the main bodies of the galaxies, but roughly coincident with the X-ray halo of the group. We fitted the inferred dust emission spectral energy distribution of this extended source and the other main infrared emission components of SQ, including the intergalactic shock, to elucidate the mechanisms powering the dust and PAH emission, taking into account collisional heating by the plasma and heating through UV and optical photons. Combining the inferred direct and dust-processed UV emission to estimate the star formation rate (SFR) for each source we obtain a total SFR for SQ of 7.5 M(sun)/yr, similar to that expected for non-interacting galaxies with stellar mass comparable to the SQ galaxies. Although star formation in SQ is mainly occurring at, or external to the periphery of the galaxies, the relation of SFR per unit physical area to gas column density for the brightest sources is similar to that seen for star-formation regions in galactic disks. We also show that available sources of dust in the group halo can provide enough dust to produce up to L_{IR}approx 10^42 erg/s powered by collisional heating. Though a minority of the total infrared emission (which we infer to trace distributed star-formation), this is several times higher than the X-ray luminosity of the halo, so could indicate an important cooling mechanism for the hot IGM and account for the overall correspondence between FIR and X-ray emission.
We investigated the star formation efficiency for all the dust emitting sources in Stephans Quintet (SQ). We inferred star formation rates using Spitzer MIR/FIR and GALEX FUV data and combined them with gas column density measurements by various auth ors, in order to position each source in a Kennicutt-Schmidt diagram. Our results show that the bright IGM star formation regions in SQ present star formation efficiencies consistent with those observed within local galaxies. On the other hand, star formation in the intergalactic shock region seems to be rather inhibited.
We use a deep Chandra observation to examine the structure of the hot intra-group medium of the compact group of galaxies Stephans Quintet. The group is thought to be undergoing a strong dynamical interaction as an interloper, NGC 7318b, passes throu gh the group core at ~850 km/s. A bright ridge of X-ray and radio continuum emission has been interpreted as the result of shock heating, with support from observations at other wavelengths. We find that gas in this ridge has a similar temperature (~0.6 keV) and abundance (~0.3 solar) to the surrounding diffuse emission, and that a hard emission component is consistent with that expected from high-mass X-ray binaries associated with star-formation in the ridge. The cooling rate of gas in the ridge is consistent with the current star formation rate, suggesting that radiative cooling is driving the observed star formation. The lack of a high-temperature gas component is used to place constraints on the nature of the interaction and shock, and we find that an oblique shock heating a pre-existing filament of HI may be the most likely explanation of the X-ray gas in the ridge. The mass of hot gas in the ridge is only ~2 per cent of the total mass of hot gas in the group, which is roughly equal to the deficit in observed HI mass compared to predictions. The hot gas component is too extended to have been heated by the current interaction, strongly suggesting that it must have been heated during previous dynamical encounters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا