ترغب بنشر مسار تعليمي؟ اضغط هنا

105 - K. Niinuma , M. Kino , A. Doi 2015
We investigate the location of the radio jet bases (radio cores) of blazars in radio images, and their stationarity by means of dense very long baseline interferometry (VLBI) observations. In order to measure the position of a radio core, we conducte d 12 epoch astrometric observation of the blazar Markarian 421 with the VLBI Exploration of Radio Astrometry at 22 GHz immediately after a large X-ray flare, which occurred in the middle of 2011 September. For the first time, we find that the radio core is not stationary but rather changes its location toward 0.5 mas downstream. This angular scale corresponds to the de-projected length of a scale of $10^5$ Schwarzschild radii (Rs) at the distance of Markarian~421. This radio-core wandering may be a new type of manifestation associated with the phenomena of large X-ray flares.
223 - Y. T. Tanaka , A. Doi , Y. Inoue 2015
We present six-year multi-wavelength monitoring result for broad-line radio galaxy 3C 120. The source was sporadically detected by Fermi-LAT and after the MeV/GeV gamma-ray detection the 43 GHz radio core brightened and a knot ejected from an unresol ved core, implying that the radio-gamma phenomena are physically connected. We show that the gamma-ray emission region is located at sub-pc distance from the central black hole, and MeV/GeV gamma-ray emission mechanism is inverse-Compton scattering of synchrotron photons. We also discuss future perspective revealed by next-generation X-ray satellite Astro-H.
75 - S. Koyama , M. Kino , A. Doi 2015
We investigate the position of the radio core in a blazar by multi-epoch astrometric observations at 43 GHz. Using the VLBI Exploration of Radio Astrometry (VERA), we have conducted four adjacent observations in February 2011 and another four in Octo ber 2011, and succeeded in measuring the position of the radio core in the TeV blazar Mrk 501 relative to a distant compact quasar NRAO 512. During our observations, we find that (1) there is no positional change within ~0.2 mas or ~2.0 pc de-projected with $pm1sigma$ error for the weighted-mean phase-referenced positions of Mrk 501 core relative to NRAO 512 over four adjacent days, and (2) there is an indication of position change for 3C 345 core relative to NRAO 512. By applying our results to the standard internal shock model for blazars, we constrain the bulk Lorenz factors of the ejecta.
119 - Y. T. Tanaka , A. Doi , Y. Inoue 2014
We present multi-wavelength monitoring results for the broad-line radio galaxy 3C 120 in the MeV/GeV, sub-millimeter, and 43 GHz bands over six years. Over the past two years, Fermi-LAT sporadically detected 3C 120 with high significance and the 230 GHz data also suggest an enhanced activity of the source. After the MeV/GeV detection from 3C 120 in MJD 56240-56300, 43 GHz VLBA monitoring revealed a brightening of the radio core, followed by the ejection of a superluminal knot. Since we observed the gamma-ray and VLBA phenomena in temporal proximity to each other, it is naturally assumed that they are physically connected. This assumption was further supported by the subsequent observation that the 43 GHz core brightened again after a gamma-ray flare occurred around MJD 56560. We can then infer that the MeV/GeV emission took place inside an unresolved 43 GHz core of 3C 120 and that the jet dissipation occurred at sub-parsec distances from the central black hole, if we take the distance of the 43 GHz core from the central black hole as ~ 0.5 pc, as previously estimated from the time lag between X-ray dips and knot ejections (Marscher et al. 2002; Chatterjee et al. 2009). Based on our constraints on the relative locations of the emission regions and energetic arguments, we conclude that the gamma rays are more favorably produced via the synchrotron self-Compton process, rather than inverse Compton scattering of external photons coming from the broad line region or hot dusty torus. We also derived the electron distribution and magnetic field by modeling the simultaneous broadband spectrum.
101 - K. Sugiyama , K. Fujisawa , A. Doi 2013
We have measured the internal proper motions of the 6.7 GHz methanol masers associated with Cepheus A (Cep A) HW2 using Very Long Baseline Interferometery (VLBI) observations. We conducted three epochs of VLBI monitoring observations of the 6.7 GHz m ethanol masers in Cep A-HW2 with the Japanese VLBI Network (JVN) over the period between 2006-2008. In 2006, we were able to use phase-referencing to measure the absolute coordinates of the maser emission with an accuracy of a few milliarcseconds. We compared the maser distribution with other molecular line observations that trace the rotating disk. We measured the internal proper motions for 29 methanol maser spots, of which 19 were identified at all three epochs and the remaining ten at only two epochs. The magnitude of proper motions ranged from 0.2 to 7.4 km/s, with an average of 3.1 km/s. Although there are large uncertainties in the observed internal proper motions of the methanol maser spots in Cep A, they are well fitted by a disk that includes both rotation and infall velocity components. The derived rotation and infall velocities at the disk radius of 680 au are 0.5 +- 0.7 and 1.8 +- 0.7 km/s, respectively. Assuming that the modeled disk motion accurately represents the accretion disk around the Cep A-HW2 high-mass YSO, we estimated the mass infall rate to be 3 x 10^{-4} n_8 Msun/yr (n_8 is the gas volume density in units of 10^{8} cm^{-3}). The combination of the estimated mass infall rate and the magnitude of the fitted infall velocity suggests that Cep A-HW2 is at an evolutionary phase of active gas accretion from the disk onto the central high-mass YSO. The infall momentum rate is estimated to be 5 x 10^{-4} n_8 Msun/yr km/s, which is larger than the estimated stellar radiation pressure of the HW2 object, supporting the hypothesis that this object is in an active gas accretion phase.
86 - F. Blanchard , A. Doi , T. Tanaka 2011
Terahertz (THz) waves have been significantly developed in the last fifteen years because of their great potential for applications in industrial and scientific communities1,2. The unique properties of THz waves as transparency for numerous materials and strong absorption for water-based materials are expected to broadly impact biosensing3 such as medical imaging4, chemical identifications5, and DNA recognition6. In particular, for accessing information within a scale comparable to the cell size where interactions between cell membrane and other organelle structures occur, micron size spatial resolution is required. Due to the large wavelength, however, the joint capability of THz near-field imaging with real-time acquisition, which is a highly desirable ability for observing real-time changes of in vivo sample, remains undone. Here, we report a real-time THz near-field microscope with a high dynamic range that can capture images of a 370 x 740 {mu}m2 area at 35 frames per second. We achieve high spatial resolution on a large area by combining two novel techniques: THz pulse generation by tilted-pulse-front excitation7 and electro-optic (EO) balanced imaging detection using a thin crystal. To demonstrate the microscope capability, we reveal the field enhancement at the gap position of a dipole antenna after the irradiation of a THz pulse. Our results are the first demonstration of a direct quantification of a 2-dimensional subwavelength THz electric field taken in real-time.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا