ترغب بنشر مسار تعليمي؟ اضغط هنا

We estimate the relative contributions of the supermassive black hole (SMBH) accretion disk, corona, and obscuring torus to the bolometric luminosity of Seyfert galaxies, using Spizter mid-infrared (MIR) observations of a complete sample of 68 nearby active galactic nuclei from the INTEGRAL all-sky hard X-ray (HX) survey. This is the first HX-selected (above 15 keV) sample of AGNs with complementary high angular resolution, high signal to noise, MIR data. Correcting for the host galaxy contribution, we find a correlation between HX and MIR luminosities: L_MIR L_HX^(0.74+/-0.06). Assuming that the observed MIR emission is radiation from an accretion disk reprocessed in a surrounding dusty torus that subtends a solid angle decreasing with increasing luminosity (as inferred from the declining fraction of obscured AGNs), the intrinsic disk luminosity, L_D, is approximately proportional to the luminosity of the corona in the 2-300 keV energy band, L_C, with the L_D/L_C ratio varying by a factor of 2.1 around a mean value of 1.6. This ratio is a factor of ~2 smaller than for typical quasars producing the cosmic X-ray background (CXB). Therefore, over three orders of magnitude in luminosity, HX radiation carries a large, and roughly comparable, fraction of the bolometric output of AGNs. We estimate the cumulative bolometric luminosity density of local AGNs at ~(1-3)x10^40 erg/s/Mpc^3. Finally, the Compton temperature ranges between kT_c~2 and ~6 keV for nearby AGNs, compared to kT_c~2 keV for typical quasars, confirming that radiative heating of interstellar gas can play an important role in regulating SMBH growth.
114 - A. D. Goulding 2012
We present the X-ray point-source catalog produced from the Chandra Advanced CCD Imaging Spectrometer (ACIS-I) observations of the combined sim3.2 deg2 DEEP2 (XDEEP2) survey fields, which consist of four ~0.7-1.1 deg2 fields. The combined total expos ures across all four XDEEP2 fields range from ~10ks-1.1Ms. We detect X-ray point-sources in both the individual ACIS-I observations and the overlapping regions in the merged (stacked) images. We find a total of 2976 unique X-ray sources within the survey area with an expected false-source contamination of ~30 sources (~1%). We present the combined logN-logS distribution of sources detected across the XDEEP2 survey fields and find good agreement with the Extended Chandra Deep Field and Chandra-COSMOS fields to f_{X,0.5-2keV}sim2x10^{-16} erg/cm^2/s. Given the large survey area of XDEEP2, we additionally place relatively strong constraints on the logN-logS distribution at high fluxes (f_{X,0.5-2keV}sim3x10^{-14} erg/cm^2/s), and find a small systematic offset (a factor ~1.5) towards lower source numbers in this regime, when compared to smaller area surveys. The number counts observed in XDEEP2 are in close agreement with those predicted by X-ray background synthesis models. Additionally, we present a Bayesian-style method for associating the X-ray sources with optical photometric counterparts in the DEEP2 catalog (complete to R_AB < 25.2) and find that 2126 (~71.4pm2.8%) of the 2976 X-ray sources presented here have a secure optical counterpart with a <6% contamination fraction. We provide the DEEP2 optical source properties (e.g., magnitude, redshift) as part of the X-ray-optical counterpart catalog.
463 - A. D. Goulding 2012
We explore the origin of mid-infrared (mid-IR) dust extinction in all 20 nearby (z < 0.05) bona-fide Compton-thick (N_H > 1.5 x 10^24 cm^-2) AGN with hard energy (E > 10 keV) X-ray spectral measurements. We accurately measure the silicate absorption features at lambda~9.7um in archival low-resolution (R~57-127) Spitzer Infrared Spectrograph (IRS) spectroscopy, and show that only a minority (~45%) of nearby Compton-thick AGN have strong Si-absorption features (S_9.7 = ln(f_{int}/f_{obs}) > 0.5) which would indicate significant dust attenuation. The majority (~60%) are star-formation dominated (AGN:SB<0.5) at mid-IR wavelengths and lack the spectral signatures of AGN activity at optical wavelengths, most likely because the AGN emission-lines are optically-extinguished. Those Compton-thick AGN hosted in low-inclination angle galaxies exhibit a narrow-range in Si-absorption (S_9.7 ~ 0-0.3), which is consistent with that predicted by clumpy-torus models. However, on the basis of the IR spectra and additional lines of evidence, we conclude that the dominant contribution to the observed mid-IR dust extinction is dust located in the host galaxy (i.e., due to disturbed morphologies; dust-lanes; galaxy inclination angles) and not necessarily a compact obscuring torus surrounding the central engine.
101 - T. P. Roberts 2010
We present the preliminary results of two Gemini campaigns to constrain the mass of the black hole in an ultraluminous X-ray source (ULX) via optical spectroscopy. Pilot studies of the optical counterparts of a number of ULXs revealed two candidates for further detailed study, based on the presence of a broad He II 4686 Angstrom emission line. A sequence of 10 long-slit spectra were obtained for each object, and the velocity shift of the ULX counterpart measured. Although radial velocity variations are observed, they are not sinusoidal, and no mass function is obtained. However, the broad He II line is highly variable on timescales shorter than a day. If associated with the reprocessing of X-rays in the accretion disc, its breadth implies that the disc must be close to face-on.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا