ترغب بنشر مسار تعليمي؟ اضغط هنا

We achieved ohmic contacts down to 5 K on standard n-doped Ge samples by creating a strongly doped thin Ge layer between the metallic contacts and the Ge substrate. Thanks to the laser doping technique used, Gas Immersion Laser Doping, we could attai n extremely large doping levels above the solubility limit, and thus reduce the metal/doped Ge contact resistance. We tested independently the influence of the doping concentration and doped layer thickness, and showed that the ohmic contact improves when increasing the doping level and is not affected when changing the doped thickness. Furthermore, we characterised the doped Ge/Ge contact, showing that at high doping its contact resistance is the dominant contribution to the total contact resistance.
An ultra-strong photovoltaic effect has recently been reported for electrons trapped on a liquid Helium surface under a microwave excitation tuned at intersubband resonance [D. Konstantinov et. al. : J. Phys. Soc. Jpn. 81, 093601 (2012) ]. In this ar ticle, we analyze theoretically the redistribution of the electron density induced by an overheating of the surface electrons under irradiation, and obtain quantitative predictions for the photocurrent dependence on the effective electron temperature and confinement voltages. We show that the photo-current can change sign as a function of the parameters of the electrostatic confinement potential on the surface, while the photocurrent measurements reported so far have been performed only at a fixed confinement potential. The experimental observation of this sign reversal could provide a reliable estimation of the electron effective temperature in this new out of equilibrium state. Finally, we have also considered the effect of the temperature on the outcome of capacitive transport measurement techniques. These investigations led us to develop, numerical and analytical methods for solving the Poisson-Boltzmann equation in the limit of very low temperatures which could be useful for other systems.
We present nonlocal resistance measurements in an ultra high mobility two dimensional electron gas. Our experiments show that even at weak magnetic fields classical guiding along edges leads to a strong non local resistance on macroscopic distances. In this high Landau level regime the transport along edges is dissipative and can be controlled by the amplitude of the voltage drop along the edge. We report resonances in the nonlocal transport as a function of this voltage that are interpreted as escape and formation of edge channels.
We build up a directed network tracing links from a given integer to its divisors and analyze the properties of the Google matrix of this network. The PageRank vector of this matrix is computed numerically and it is shown that its probability is inve rsely proportional to the PageRank index thus being similar to the Zipf law and the dependence established for the World Wide Web. The spectrum of the Google matrix of integers is characterized by a large gap and a relatively small number of nonzero eigenvalues. A simple semi-analytical expression for the PageRank of integers is derived that allows to find this vector for matrices of billion size. This network provides a new PageRank order of integers.
We investigate theoretically the onset of capillary-gravity waves created by a small object moving at the water-air interface. It is well established that, for straight uniform motion, no steady waves appear at velocities below the minimum phase velo city $c_text{min} = 23 {rm cm/s}$. At higher velocities the emission of capillary-gravity waves creates an additional drag force. The behavior of this force near the critical velocity is still poorly understood. A linear response theory where the object is replaced by an effective pressure source predicts a singular behavior for the wave drag. However, experimental data tends to indicate a more continuous transition. In this article, we show that a proper treatment of the flow equations around the obstacle can regularize wave emission, even in the linear wave approximation, thereby ensuring a continuous behavior of the drag force.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا