ترغب بنشر مسار تعليمي؟ اضغط هنا

We compute critical exponents of O(N) models in fractal dimensions between two and four, and for continuos values of the number of field components N, in this way completing the RG classification of universality classes for these models. In d=2 the N -dependence of the correlation length critical exponent gives us the last piece of information needed to establish a RG derivation of the Mermin-Wagner theorem. We also report critical exponents for multi-critical universality classes in the cases N>1 and N=0. Finally, in the large-N limit our critical exponents correctly approach those of the spherical model, allowing us to set N~100 as threshold for the quantitative validity of leading order large-N estimates.
We consider the renormalization of d-dimensional hypersurfaces (branes) embedded in flat (d+1)-dimensional space. We parametrize the truncated effective action in terms of geometric invariants built from the extrinsic and intrinsic curvatures. We stu dy the renormalization-group running of the couplings and explore the fixed-point structure. We find evidence for an ultraviolet fixed point similar to the one underlying the asymptotic-safety scenario of gravity. We also examine whether the structure of the Galileon theory, which can be reproduced in the nonrelativistic limit, is preserved at the quantum level.
74 - A. Codello , G. DOdorico 2012
We study how universality classes of O(N)-symmetric models depend continuously on the dimension d and the number of field components N. We observe, from a renormalization group perspective, how the implications of the Mermin-Wagner-Hohenberg theorem set in as we gradually deform theory space towards d=2. For fractal dimension in the range 2<d<3 we observe, for any N bigger than or equal to 1, a finite family of multi-critical effective potentials of increasing order. Apart for the N=1 case, these disappear in d=2 consistently with the Mermin-Wagner-Hohenberg theorem. Finally, we study O(N=0)-universality classes and find an infinite family of these in two dimensions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا